Dunwoody manifolds are an interesting class of closed connected orientable 3-manifolds, which are defined by means of Heegaard diagrams having a rotational symmetry. They are proved to be cyclic coverings of lens spaces (possibly S3) branched over (1,1)-knots. Here we study the Dunwoody manifolds which are cyclic coverings of the 3-sphere branched over two specified families of Montesinos knots. Then we determine the Dunwoody parameters for such knots and the isometry groups for the considered manifolds in the hyperbolic case.A list of volumes for some hyperbolic Dunwoody manifolds completes the paper.

Isometry Groups of Some Dunwoody Manifolds

TELLONI, AGNESE ILARIA
2016-01-01

Abstract

Dunwoody manifolds are an interesting class of closed connected orientable 3-manifolds, which are defined by means of Heegaard diagrams having a rotational symmetry. They are proved to be cyclic coverings of lens spaces (possibly S3) branched over (1,1)-knots. Here we study the Dunwoody manifolds which are cyclic coverings of the 3-sphere branched over two specified families of Montesinos knots. Then we determine the Dunwoody parameters for such knots and the isometry groups for the considered manifolds in the hyperbolic case.A list of volumes for some hyperbolic Dunwoody manifolds completes the paper.
2016
World Scientific Publishing Co. Pte Ltd
Internazionale
File in questo prodotto:
File Dimensione Formato  
16.AC23114.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 505.06 kB
Formato Adobe PDF
505.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/364212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact