We study a family of closed connected orientable 3-manifolds obtained by Dehn surgeries with rational coefficients along the oriented components of certain links. This family contains all the manifolds obtained by surgery along the (hyperbolic) 2-bridge knots. We find geometric presentations for the fundamental group of such manifolds and represent them as branched covering spaces. As a consequence, we prove that the surgery manifolds, arising from the hyperbolic 2-bridge knots, have Heegaard genus 2 and are 2-fold coverings of the 3-sphere branched over well-specified links.
Fundamental Group and Covering Properties of Hyperbolic Surgery Manifolds
TELLONI, Agnese Ilaria
2013-01-01
Abstract
We study a family of closed connected orientable 3-manifolds obtained by Dehn surgeries with rational coefficients along the oriented components of certain links. This family contains all the manifolds obtained by surgery along the (hyperbolic) 2-bridge knots. We find geometric presentations for the fundamental group of such manifolds and represent them as branched covering spaces. As a consequence, we prove that the surgery manifolds, arising from the hyperbolic 2-bridge knots, have Heegaard genus 2 and are 2-fold coverings of the 3-sphere branched over well-specified links.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
484508.pdf
non disponibili
Licenza:
Non specificato
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


