This paper analyses whether negation, as a modifier of degree, leads to different outcomes based on the psychophysical structure of the polar dimension along which the shift produced by the negator “not” occurs. In three experiments, the interpretation of negation in association with four different types of dimension was analysed. The types comprised: (1) strongly asymmetrical dimensions, topologically defined (in terms of the characteristics of Pole a/intermediates/Pole b) as unbounded range/no intermediates/point (e.g., open-closed); (2) moderately asymmetrical dimensions, topologically defined as unbounded range/range of intermediates/bounded range (e.g., wide-narrow); (3) slightly symmetrical dimensions, topologically defined as point/range of intermediates/point (e.g., full-empty); and (4) symmetrical dimensions, topologically defined as bounded range/point/bounded range (e.g., above-below). Results showed that the function of negation varies depending on which type of dimension is involved. These results are discussed in relation to previous literature, where the definition of various types of antonyms was based on the applicability of different lexical modifiers of degree.
Negation and psychological dimensions.
BIANCHI, IVANA;
2011-01-01
Abstract
This paper analyses whether negation, as a modifier of degree, leads to different outcomes based on the psychophysical structure of the polar dimension along which the shift produced by the negator “not” occurs. In three experiments, the interpretation of negation in association with four different types of dimension was analysed. The types comprised: (1) strongly asymmetrical dimensions, topologically defined (in terms of the characteristics of Pole a/intermediates/Pole b) as unbounded range/no intermediates/point (e.g., open-closed); (2) moderately asymmetrical dimensions, topologically defined as unbounded range/range of intermediates/bounded range (e.g., wide-narrow); (3) slightly symmetrical dimensions, topologically defined as point/range of intermediates/point (e.g., full-empty); and (4) symmetrical dimensions, topologically defined as bounded range/point/bounded range (e.g., above-below). Results showed that the function of negation varies depending on which type of dimension is involved. These results are discussed in relation to previous literature, where the definition of various types of antonyms was based on the applicability of different lexical modifiers of degree.File | Dimensione | Formato | |
---|---|---|---|
JCP_ NON_Corrected version copia.pdf
solo utenti autorizzati
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Copyright dell'editore
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.