This paper provides a solution of a generalized eigenvalue problem for a fractional integrated processes. To this end two random matrices are constructed in order to take into account the stationarity properties of the differences of a fractional p-variate integrated process. The matrices are defined by some weight functions and the difference orders are assumed to vary in a continuous and discrete range. The asymptotic behavior of these matrices is obtained imposing some conditions on the weight functions. Using Bierens (1987) and Andersen et al. (1983) results, a generalized eigenvalues problem is solved.

Asymptotic solutions of a generalized eigenvalue problem

CERQUETI, ROY;
2009-01-01

Abstract

This paper provides a solution of a generalized eigenvalue problem for a fractional integrated processes. To this end two random matrices are constructed in order to take into account the stationarity properties of the differences of a fractional p-variate integrated process. The matrices are defined by some weight functions and the difference orders are assumed to vary in a continuous and discrete range. The asymptotic behavior of these matrices is obtained imposing some conditions on the weight functions. Using Bierens (1987) and Andersen et al. (1983) results, a generalized eigenvalues problem is solved.
2009
Hikari Ltd
Internazionale
File in questo prodotto:
File Dimensione Formato  
cerquetiAMS57-60-2009.pdf

solo utenti autorizzati

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 125.07 kB
Formato Adobe PDF
125.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/38758
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact