In this paper we tackle the problem of estimating the power-law tail exponent of income distributions by using the Hill's estimator. A subsample semi-parametric bootstrap procedure minimizing the mean squared error is used to choose the power-law cutoff value optimally. This technique is applied to personal income data for Australia and Italy.
The power-law tail exponent of income distributions
CLEMENTI, FABIO;
2006-01-01
Abstract
In this paper we tackle the problem of estimating the power-law tail exponent of income distributions by using the Hill's estimator. A subsample semi-parametric bootstrap procedure minimizing the mean squared error is used to choose the power-law cutoff value optimally. This technique is applied to personal income data for Australia and Italy.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
fulltext.pdf
solo utenti autorizzati
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
DRM non definito
Dimensione
731.89 kB
Formato
Adobe PDF
|
731.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.