We propose a class of estimators of the Bayes factor which is based on an extension of the bridge sampling identity of Meng & Wong (1996) and makes use of the output of the reversible jump algorithm of Green (1995). Within this class we give the optimal estimator and also a suboptimal one which may be simply computed on the basis of the acceptance probabilities used within the reversible jump algorithm for jumping between models. The proposed estimators are very easily computed and lead to a substantial gain of efficiency in estimating the Bayes factor over the standard estimator based on the reversible jump output. This is illustrated through a series of Monte Carlo simulations involving a linear and a logistic regression model.
Efficient Bayes factor estimation from the Reversible jump output
SCACCIA, LUISA;
2006-01-01
Abstract
We propose a class of estimators of the Bayes factor which is based on an extension of the bridge sampling identity of Meng & Wong (1996) and makes use of the output of the reversible jump algorithm of Green (1995). Within this class we give the optimal estimator and also a suboptimal one which may be simply computed on the basis of the acceptance probabilities used within the reversible jump algorithm for jumping between models. The proposed estimators are very easily computed and lead to a substantial gain of efficiency in estimating the Bayes factor over the standard estimator based on the reversible jump output. This is illustrated through a series of Monte Carlo simulations involving a linear and a logistic regression model.File | Dimensione | Formato | |
---|---|---|---|
Biometrika_2006.pdf
accesso aperto
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
DRM non definito
Dimensione
121.93 kB
Formato
Adobe PDF
|
121.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.