The paper is dedicated to the study of the problem of continuous dependence of compact global attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems (IIFS). We prove that if a family of non-autonomous dynamical systems depending on a parameter is uniformly contracting (in the generalized sense), then each system of this family admits a compact global attractor. As an application we give a generalization of well known Theorem of Bransley concerning the continuous dependence of fractals on parameters.

Continuous Dependence of Attractors on Parameters of Non-Autonomous Dynamical Systems and Infinite Iterated Function Systems

MAMMANA, Cristiana
2007-01-01

Abstract

The paper is dedicated to the study of the problem of continuous dependence of compact global attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems (IIFS). We prove that if a family of non-autonomous dynamical systems depending on a parameter is uniformly contracting (in the generalized sense), then each system of this family admits a compact global attractor. As an application we give a generalization of well known Theorem of Bransley concerning the continuous dependence of fractals on parameters.
2007
Southwest Missouri State University:Department of Mathematics:Springfield, MO 65804:(417)836-5377, EMAIL: shh209f@smsu.edu, INTERNET: http://www.math.smsu.edu, Fax: (417)886-0559
Internazionale
File in questo prodotto:
File Dimensione Formato  
paper5.pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 242.76 kB
Formato Adobe PDF
242.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/36219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact