The paper is dedicated to the study of the problem of the existence of compact global attractors of discrete inclusions and to the description of its structure. We consider a family of continuous mappings of a metric space W into itself; on the metric space W we consider a discrete inclusion. We give sufficient conditions for the existence of a compact global attractor. If the family consists of a finite number of maps, then the corresponding compact global attractor is chaotic. We study this problem in the framework of non-autonomous dynamical systems (cocyles).

Compact Global Attractors of Discrete Inclusions

MAMMANA, Cristiana
2006-01-01

Abstract

The paper is dedicated to the study of the problem of the existence of compact global attractors of discrete inclusions and to the description of its structure. We consider a family of continuous mappings of a metric space W into itself; on the metric space W we consider a discrete inclusion. We give sufficient conditions for the existence of a compact global attractor. If the family consists of a finite number of maps, then the corresponding compact global attractor is chaotic. We study this problem in the framework of non-autonomous dynamical systems (cocyles).
2006
Elsevier Science Limited:Oxford Fulfillment Center, PO Box 800, Kidlington Oxford OX5 1DX United Kingdom:011 44 1865 843000, 011 44 1865 843699, EMAIL: asianfo@elsevier.com, tcb@elsevier.co.UK, INTERNET: http://www.elsevier.com, http://www.elsevier.com/locate/shpsa/, Fax: 011 44 1865 843010
Internazionale
File in questo prodotto:
File Dimensione Formato  
paper11.pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 309.31 kB
Formato Adobe PDF
309.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/36218
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact