Logistic regression is a simple yet effective technique widely used in machine learning with applications spanning various scientific fields. In this paper, we introduce new logistic regression models based on the k-exponential function derived from k-statistical theory, which approaches the standard exponential function as its parameter k tends to zero. We propose models for both binary and multivariate classification, demonstrating that they extend traditional logistic regression while maintaining the same computational complexity as conventional logistic classifiers. Computational experiments on diverse benchmark data sets show that our k-logistic classifiers outperform standard logistic regression models in the vast majority of cases.

Classification methods based on k-logistic models

Baldi, Mauro Maria;
2026-01-01

Abstract

Logistic regression is a simple yet effective technique widely used in machine learning with applications spanning various scientific fields. In this paper, we introduce new logistic regression models based on the k-exponential function derived from k-statistical theory, which approaches the standard exponential function as its parameter k tends to zero. We propose models for both binary and multivariate classification, demonstrating that they extend traditional logistic regression while maintaining the same computational complexity as conventional logistic classifiers. Computational experiments on diverse benchmark data sets show that our k-logistic classifiers outperform standard logistic regression models in the vast majority of cases.
2026
Elsevier
Internazionale
https://www.sciencedirect.com/science/article/abs/pii/S0378475425002666
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378475425002666-main.pdf

solo utenti autorizzati

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Non specificato
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/359810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact