We explore biases present in publicly available fetal ultrasound (US) imaging datasets, currently at the disposal of researchers to train deep learning (DL) algorithms for prenatal diagnostics. As DL increasingly permeates the field of medical imaging, the urgency to critically evaluate the fairness of benchmark public datasets used to train them grows. Our thorough investigation reveals a multifaceted bias problem, encompassing issues such as lack of demographic representativeness, limited diversity in clinical conditions depicted, and variability in US technology used across datasets. We argue that these biases may significantly influence DL model performance, which may lead to inequities in healthcare outcomes. To address these challenges, we recommend a multilayered approach. This includes promoting practices that ensure data inclusivity, such as diversifying data sources and populations, and refining model strategies to better account for population variances. These steps will enhance the trustworthiness of DL algorithms in fetal US analysis.

Uncovering ethical biases in publicly available fetal ultrasound datasets

Moccia, Sara;Frontoni, Emanuele;Giovanola, Benedetta;Tiribelli, Simona
2025-01-01

Abstract

We explore biases present in publicly available fetal ultrasound (US) imaging datasets, currently at the disposal of researchers to train deep learning (DL) algorithms for prenatal diagnostics. As DL increasingly permeates the field of medical imaging, the urgency to critically evaluate the fairness of benchmark public datasets used to train them grows. Our thorough investigation reveals a multifaceted bias problem, encompassing issues such as lack of demographic representativeness, limited diversity in clinical conditions depicted, and variability in US technology used across datasets. We argue that these biases may significantly influence DL model performance, which may lead to inequities in healthcare outcomes. To address these challenges, we recommend a multilayered approach. This includes promoting practices that ensure data inclusivity, such as diversifying data sources and populations, and refining model strategies to better account for population variances. These steps will enhance the trustworthiness of DL algorithms in fetal US analysis.
2025
NATURE DIGITAL MEDICINE
Internazionale
File in questo prodotto:
File Dimensione Formato  
s41746-025-01739-3.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 930.52 kB
Formato Adobe PDF
930.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/357311
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact