In this paper, we present a new approach for modelling matrix-variate time series data that accounts for smooth changes in the dynamics of matrices. Although stylized facts in several fields suggest the existence of smooth nonlinearities, the existing matrix-variate models do not account for regime switches that are not abrupt. To address this gap, we introduce the matrix smooth transition autoregressive model, a flexible regime-switching model capable of capturing abrupt, smooth and no regime changes in matrix-valued data. We provide a thorough examination of the estimation process and evaluate the finite-sample performance of the matrix-variate smooth transition autoregressive model estimators with simulated data. Finally, the model is applied to real-world data.
A Smooth Transition Autoregressive Model for Matrix-Variate Time Series
Bucci, Andrea
2024-01-01
Abstract
In this paper, we present a new approach for modelling matrix-variate time series data that accounts for smooth changes in the dynamics of matrices. Although stylized facts in several fields suggest the existence of smooth nonlinearities, the existing matrix-variate models do not account for regime switches that are not abrupt. To address this gap, we introduce the matrix smooth transition autoregressive model, a flexible regime-switching model capable of capturing abrupt, smooth and no regime changes in matrix-valued data. We provide a thorough examination of the estimation process and evaluate the finite-sample performance of the matrix-variate smooth transition autoregressive model estimators with simulated data. Finally, the model is applied to real-world data.File | Dimensione | Formato | |
---|---|---|---|
2024_Computational Economics_A smooth transition for matrix-variate.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.