In this paper, we present a new approach for modelling matrix-variate time series data that accounts for smooth changes in the dynamics of matrices. Although stylized facts in several fields suggest the existence of smooth nonlinearities, the existing matrix-variate models do not account for regime switches that are not abrupt. To address this gap, we introduce the matrix smooth transition autoregressive model, a flexible regime-switching model capable of capturing abrupt, smooth and no regime changes in matrix-valued data. We provide a thorough examination of the estimation process and evaluate the finite-sample performance of the matrix-variate smooth transition autoregressive model estimators with simulated data. Finally, the model is applied to real-world data.

A Smooth Transition Autoregressive Model for Matrix-Variate Time Series

Bucci, Andrea
2024-01-01

Abstract

In this paper, we present a new approach for modelling matrix-variate time series data that accounts for smooth changes in the dynamics of matrices. Although stylized facts in several fields suggest the existence of smooth nonlinearities, the existing matrix-variate models do not account for regime switches that are not abrupt. To address this gap, we introduce the matrix smooth transition autoregressive model, a flexible regime-switching model capable of capturing abrupt, smooth and no regime changes in matrix-valued data. We provide a thorough examination of the estimation process and evaluate the finite-sample performance of the matrix-variate smooth transition autoregressive model estimators with simulated data. Finally, the model is applied to real-world data.
2024
SPRINGER
Internazionale
File in questo prodotto:
File Dimensione Formato  
2024_Computational Economics_A smooth transition for matrix-variate.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/333610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact