Digital marketing i.e., any type of advertising proposed on electronic devices over the Internet, has been the prevalent advertising methodology in the last decades. As such, measuring its effectiveness and distinguishing genuine conversions generated by real users from fraudulent traffic (for example generated by bots) is of utmost importance. In this paper, such issue is tackled by using Machine Learning and, specifically, comparing a Shallow Neural Network and a Random Forest, to automatically classify traffic data of digital marketing campaigns into 'good' and 'bad' traffic. The two proposed models are evaluated on real traffic data, manually annotated. The results demonstrate the feasibility of the proposed classification task, with the Shallow Neural Network achieving a 98% precision and recall, without exhibiting overfitting, over the 32,000 samples of the tested dataset.

Machine learning-based classification of the traffic of digital marketing campaigns

Sernani P.;
2023-01-01

Abstract

Digital marketing i.e., any type of advertising proposed on electronic devices over the Internet, has been the prevalent advertising methodology in the last decades. As such, measuring its effectiveness and distinguishing genuine conversions generated by real users from fraudulent traffic (for example generated by bots) is of utmost importance. In this paper, such issue is tackled by using Machine Learning and, specifically, comparing a Shallow Neural Network and a Random Forest, to automatically classify traffic data of digital marketing campaigns into 'good' and 'bad' traffic. The two proposed models are evaluated on real traffic data, manually annotated. The results demonstrate the feasibility of the proposed classification task, with the Shallow Neural Network achieving a 98% precision and recall, without exhibiting overfitting, over the 32,000 samples of the tested dataset.
2023
9798350300802
File in questo prodotto:
File Dimensione Formato  
Abbonizio_machinelearningbased_2023.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Abbonizio_frontespizio_2023.pdf

solo utenti autorizzati

Tipologia: Altro materiale allegato (es. Copertina, Indice, Materiale supplementare, Abstract, Brevetti Spin-off, Start-up etc.)
Licenza: Copyright dell'editore
Dimensione 432.56 kB
Formato Adobe PDF
432.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Abbonizio_indice_2023.pdf

solo utenti autorizzati

Tipologia: Altro materiale allegato (es. Copertina, Indice, Materiale supplementare, Abstract, Brevetti Spin-off, Start-up etc.)
Licenza: Copyright dell'editore
Dimensione 132.19 kB
Formato Adobe PDF
132.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/328631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact