The time series prediction problem aimed at the implementation of a 'smart thermostat' is addressed. 'SARIMAX models' are compared with LSTM neural networks. We show that with a low amount of data used for training, SARIMAX models achieve significantly higher accuracy while maintaining high computational efficiency, so in a problem where it becomes necessary to implement the system on low-power embedded devices, these approaches have significant advantages over neural networks.
A Comparison of time series prediction techniques for the realization of a smart thermostat
Sernani, Paolo;
2023-01-01
Abstract
The time series prediction problem aimed at the implementation of a 'smart thermostat' is addressed. 'SARIMAX models' are compared with LSTM neural networks. We show that with a low amount of data used for training, SARIMAX models achieve significantly higher accuracy while maintaining high computational efficiency, so in a problem where it becomes necessary to implement the system on low-power embedded devices, these approaches have significant advantages over neural networks.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Lanciotti_acomparisonoftimeseries_2023.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Copyright dell'editore
Dimensione
946.22 kB
Formato
Adobe PDF
|
946.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Lanciotti_frontespizio_2023.pdf
solo utenti autorizzati
Tipologia:
Altro materiale allegato (es. Copertina, Indice, Materiale supplementare, Abstract, Brevetti Spin-off, Start-up etc.)
Licenza:
Copyright dell'editore
Dimensione
432.56 kB
Formato
Adobe PDF
|
432.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Lanciotti_indice_2023.pdf
solo utenti autorizzati
Tipologia:
Altro materiale allegato (es. Copertina, Indice, Materiale supplementare, Abstract, Brevetti Spin-off, Start-up etc.)
Licenza:
Copyright dell'editore
Dimensione
132.19 kB
Formato
Adobe PDF
|
132.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.