Building on the recent advances in multimodal zero-shot representation learning, in this paper we explore the use of features obtained from the recent CLIP model to perform conditioned image retrieval. Starting from a reference image and an additive textual description of what the user wants with respect to the reference image, we learn a Combiner network that is able to understand the image content, integrate the textual description and provide combined feature used to perform the conditioned image retrieval. Starting from the bare CLIP features and a simple baseline, we show that a carefully crafted Combiner network, based on such multimodal features, is extremely effective and outperforms more complex state of the art approaches on the popular FashionIQ dataset.

Conditioned Image Retrieval for Fashion using Contrastive Learning and CLIP-based Features

Uricchio T.;
2021-01-01

Abstract

Building on the recent advances in multimodal zero-shot representation learning, in this paper we explore the use of features obtained from the recent CLIP model to perform conditioned image retrieval. Starting from a reference image and an additive textual description of what the user wants with respect to the reference image, we learn a Combiner network that is able to understand the image content, integrate the textual description and provide combined feature used to perform the conditioned image retrieval. Starting from the bare CLIP features and a simple baseline, we show that a carefully crafted Combiner network, based on such multimodal features, is extremely effective and outperforms more complex state of the art approaches on the popular FashionIQ dataset.
2021
9781450386074
File in questo prodotto:
File Dimensione Formato  
3469877.3493593 (1).pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati
Dimensione 598.06 kB
Formato Adobe PDF
598.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/313511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact