How to automatically monitor wide critical open areas is a challenge to be addressed. Recent computer vision algorithms can be exploited to avoid the deployment of a large amount of expensive sensors. In this work, we propose our object tracking system which, combined with our recently developed anomaly detection system. can provide intelligence and protection for critical areas. In this work. we report two case studies: an international pier and a city parking lot. We acquire sequences to evaluate the effectiveness of the approach in challenging conditions. We report quantitative results for object counting, detection, parking analysis, and anomaly detection. Moreover, we report state-of-the-art results for statistical anomaly detection on a public dataset.
Deep Learning Based Surveillance System for Open Critical Areas
Tiberio Uricchio;
2018-01-01
Abstract
How to automatically monitor wide critical open areas is a challenge to be addressed. Recent computer vision algorithms can be exploited to avoid the deployment of a large amount of expensive sensors. In this work, we propose our object tracking system which, combined with our recently developed anomaly detection system. can provide intelligence and protection for critical areas. In this work. we report two case studies: an international pier and a city parking lot. We acquire sequences to evaluate the effectiveness of the approach in challenging conditions. We report quantitative results for object counting, detection, parking analysis, and anomaly detection. Moreover, we report state-of-the-art results for statistical anomaly detection on a public dataset.File | Dimensione | Formato | |
---|---|---|---|
inventions-03-00069.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.