Where previous reviews on content-based image retrieval emphasize what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems (i.e., image tag assignment, refinement, and tag-based image retrieval) is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, that is, estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this article introduces a two-dimensional taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison with the state of the art, a new experimental protocol is presented, with training sets containing 10,000, 100,000, and 1 million images, and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.

Socializing the semantic gap: A comparative survey on image tag assignment, refinement, and retrieval

URICCHIO, TIBERIO;
2016-01-01

Abstract

Where previous reviews on content-based image retrieval emphasize what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems (i.e., image tag assignment, refinement, and tag-based image retrieval) is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, that is, estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this article introduces a two-dimensional taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison with the state of the art, a new experimental protocol is presented, with training sets containing 10,000, 100,000, and 1 million images, and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.
2016
ACM
Internazionale
https://dl.acm.org/journal/csur
File in questo prodotto:
File Dimensione Formato  
socializing ....pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/313330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 143
  • ???jsp.display-item.citation.isi??? 108
social impact