The Generalized Bin Packing Problem (GBPP) is a recently introduced packing problem where, given a set of bins characterized by volume and cost and a set of items characterized by volume and profit (which also depends on bins), we want to select a subset of items to be loaded into a subset of bins which maximizes the total net profit, while satisfying the volume and bin availability constraints. The total net profit is given by the difference between the total profit of the loaded items and the total cost of the used bins. In this paper, we consider the stochastic version of the GBPP (S-GBPP), where the item profits are random variables to take into account the profit oscillations due to the handling operations for bin loading. The probability distribution of these random variables is assumed to be unknown. By using the asymptotic theory of extreme values a deterministic approximation for the S-GBPP is derived. © 2011 Elsevier B.V. All rights reserved.

The stochastic generalized bin packing problem

Baldi M. M.
2012-01-01

Abstract

The Generalized Bin Packing Problem (GBPP) is a recently introduced packing problem where, given a set of bins characterized by volume and cost and a set of items characterized by volume and profit (which also depends on bins), we want to select a subset of items to be loaded into a subset of bins which maximizes the total net profit, while satisfying the volume and bin availability constraints. The total net profit is given by the difference between the total profit of the loaded items and the total cost of the used bins. In this paper, we consider the stochastic version of the GBPP (S-GBPP), where the item profits are random variables to take into account the profit oscillations due to the handling operations for bin loading. The probability distribution of these random variables is assumed to be unknown. By using the asymptotic theory of extreme values a deterministic approximation for the S-GBPP is derived. © 2011 Elsevier B.V. All rights reserved.
2012
ELSEVIER SCIENCE BV
Internazionale
File in questo prodotto:
File Dimensione Formato  
k_Perboli2012.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: DRM non definito
Dimensione 208.78 kB
Formato Adobe PDF
208.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/312094
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact