Understanding how molecules engage in collective motions in a liquid where a network of bonds exists has both fundamental and applied relevance. On the one hand, it can elucidate the ``ordering" role of long-range correlations in an otherwise strongly dissipative system; on the other hand, it can inspire new avenues to control such order to implement sound manipulation.Water represents an ideal investigation case to unfold these general aspects and, across the decades, it has been the focus of thorough scrutiny. Despite this investigative effort, the spectrum of terahertz density fluctuations of water largely remains a puzzle for Condensed Matter physicists. To unravel it, we compare previous scattering measurements of water spectra with new ones on ice. Thanks to the unique asset of Bayesian inference, we draw a more detailed portrayal of the phonon response of ice. The comparison with the one of liquid water challenges the current understanding of density fluctuations in water, or more in general, of any networked liquid.

Ice phonon spectra and Bayes inference: a gateway to a new understanding of terahertz sound propagation in water

Scaccia, Luisa;
2023-01-01

Abstract

Understanding how molecules engage in collective motions in a liquid where a network of bonds exists has both fundamental and applied relevance. On the one hand, it can elucidate the ``ordering" role of long-range correlations in an otherwise strongly dissipative system; on the other hand, it can inspire new avenues to control such order to implement sound manipulation.Water represents an ideal investigation case to unfold these general aspects and, across the decades, it has been the focus of thorough scrutiny. Despite this investigative effort, the spectrum of terahertz density fluctuations of water largely remains a puzzle for Condensed Matter physicists. To unravel it, we compare previous scattering measurements of water spectra with new ones on ice. Thanks to the unique asset of Bayesian inference, we draw a more detailed portrayal of the phonon response of ice. The comparison with the one of liquid water challenges the current understanding of density fluctuations in water, or more in general, of any networked liquid.
2023
AIP publishing
Internazionale
https://aip.scitation.org/doi/10.1063/5.0141372
File in questo prodotto:
File Dimensione Formato  
JCP23-AR-00054.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: DRM non definito
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/309591
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact