This paper improves the existing literature on the shrinkage of high dimensional model and parameter spaces through Bayesian priors and Markov Chains algorithms. A hierarchical semiparametric Bayes approach is developed to overtake limits and misspecificity involved in compressed regression models. Methodologically, a multicountry large structural Panel Vector Autoregression is compressed through a robust model averaging to select the best subset across all possible combinations of predictors, where robust stands for the use of mixtures of proper conjugate priors. Concerning dynamic analysis, volatility changes and conditional density forecasts are addressed ensuring accurate predictive performance and capability. An empirical and simulated experiment are developed to highlight and discuss the functioning of the estimating procedure and forecasting accuracy.

Structural Compressed Panel VAR with Stochastic Volatility: A Robust Bayesian Model Averaging Procedure

Pacifico Antonio
2022-01-01

Abstract

This paper improves the existing literature on the shrinkage of high dimensional model and parameter spaces through Bayesian priors and Markov Chains algorithms. A hierarchical semiparametric Bayes approach is developed to overtake limits and misspecificity involved in compressed regression models. Methodologically, a multicountry large structural Panel Vector Autoregression is compressed through a robust model averaging to select the best subset across all possible combinations of predictors, where robust stands for the use of mixtures of proper conjugate priors. Concerning dynamic analysis, volatility changes and conditional density forecasts are addressed ensuring accurate predictive performance and capability. An empirical and simulated experiment are developed to highlight and discuss the functioning of the estimating procedure and forecasting accuracy.
2022
MDPI
Internazionale
https://www.mdpi.com/2225-1146/10/3/28
File in questo prodotto:
File Dimensione Formato  
Articolo_Econometrics.pdf

accesso aperto

Descrizione: Articolo pubblicato su Rivista Internazionale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/307510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact