Today’s education systems have to deal with elements of complexity resulting from the rapid transformations of contemporary society. Employability and professional skills have evolved considerably since the beginning of the 21st century, with an emphasis on creativity, design, and engineering processes. The post-digital has “penetrated” the pedagogical process, breaking the boundaries of formal and informal teaching and learning and becoming one of the great challenges of today’s educational landscape. This scenario calls for a rethinking of teaching and learning paths, emphasizing flexible design and competence-based didactics, oriented towards situated, open, and authentic tasks, and effectively integrating technologies to bridge the gap between real life and traditional didactic proposals. Open, collaborative, and experimental tasks are distinctive features of Maker Education, in which learners, as makers, actively construct their own knowledge through practical activities that combine manual and digital skills. Indeed, this educational approach is considered as a technological extension of activism, capable of conveying the development of STEAM and 21st century skills, implementing the principles of project-based and hands-on learning and promoting a strongly "enactive" participatory design process. This text aims to outline a theoretical background on Maker Culture and emerging scenarios in the field of technology for education, and then illustrate an experimentation plan developed from these needs and theoretical foundations. The pilot project, run as a PhD project between January 2021 and April 2022, provided a proposal for integrating making activities into the curricular teaching of primary and secondary schools to detect their impact on students’ attitude towards STEM and 21st century skills (Q1) and perceived school self-efficacy (Q2). It was mainly developed during the Covid-19 health emergency period and is divided into two parts, involving 53 students and five teachers in a vertical pathway oriented towards laboratory and collaborative practices following a multidisciplinary and longitudinal approach. To this end, we proposed authentic challenges related to the topics of the 2030 Agenda, designed to link with the curricular content and students’ life contexts and foster the development of skills. We also chose to adopt Design-Based Implementation Research as the main methodology and to promote a form of assessment ‘as’ learning, making students involved in the assessment process. Project evaluation was conducted using quantitative and qualitative data collection tools. Indeed, we selected two validated questionnaires aimed at investigating the above-mentioned variables, to be administered at the beginning and end of the two project phases. During each meeting, the students also filled in logbooks with self-assessments and, based on these, we co-designed an assessment rubric with the teachers. Finally, at the end of the first part, the teachers were involved in a focus group. The project had an impact on students’ life skills, eliciting the three interconnected areas of competence outlined in the 2020 European Framework ‘LifeComp’ and those described by the World Economic Forum in 2015. In the various pre-post comparisons, 21st century skills scored higher than the STEM areas investigated by Q1. While the pre-posts of the two parts show a more consistent development of skills related to the interpersonal sphere, the extended comparison also shows a significant increase in skills related to the personal sphere. The consistent areas of improvement relate to organizational and leadership skills, as confirmed by the results of Q2 on self-regulated learning skills. Regarding attitude towards STEM subjects, students showed a more pronounced leaning towards the fields of engineering and technology. However, in all comparisons, we found a high attitude towards the perspectives of improved subject performance in the mathematical-scientific fields and a progressive development of the items related to advanced use of subjects in future employment. Finally, the students also increased their perceived self-efficacy towards non-STEM school subjects. The logbooks placed further emphasis on the development of the students’ life skills. In both parts of the project, the students show good to very good levels of self-efficacy in working well in groups, communicating their ideas clearly, and controlling their emotions when interacting with others. Compared to the whole course, the highest average scores are found for the effective use of tools and information and the ability to work well in a group. The students showed an increasing awareness of their limits and goals, focusing mainly on their interpersonal skills, confirming the strongly social character of the making activities, but also on personal and learning-to-learn aspects. In fact, most of the students’ suggestions for improvement concerned communication and collaboration dynamics within the group, as well as resource and time management. Many of these observations coincide with those reported by the teachers during the focus group, which turned out to be extremely precious in redesigning the pathway with a view to greater functionality and sustainability. The positive impact on students’ self-efficacy and self-confidence can primarily be explained by the possibility of being active agents, incorporating their own interests and practices and consolidating the tendency towards so-called authorship learning. Technology proved to be a valuable tool for learning many curricular concepts, but especially for enabling students to work on their creativity and ability to design, build, collaborate, and revise. Moreover, the direct link with real problems and the possibility to hypothesize, anticipate possible scenarios, test, and reformulate provided a strong stimulus for problem-solving and problem-posing skills and the construction of new understandings. This in turn fostered “facilitated” and alternative access to scientific knowledge and young students’ involvement in deeper STEM learning. Many of the educational benefits attributed to the Maker approach were thus positively reflected in the project outcomes. Makerspaces proved to be generative learning environments for skills, new modes of inclusion, and opportunities for school innovation. The experiences gathered and the pilot project aim to initiate a process of rethinking and reflection on current educational practices, which still appear too often anchored to traditional schemes that no longer conform to today’s society, characterized by rapid change and complexity. The aim is undoubtedly to highlight the lights and shadows, potential and challenges of an innovative and “transformative” approach to traditional didactics, marking a step forward in educational research while identifying future directions to pursue and investigate.
I sistemi educativi si trovano oggi a dialogare con gli elementi di complessità derivanti dalle rapide trasformazioni della società contemporanea. L’occupabilità e le competenze professionali sono notevolmente evolute dall’inizio del XXI secolo, con un’enfasi sulla creatività, il design e i processi ingegneristici. Il post-digitale si è immerso nel processo pedagogico, rompendo i confini dell’insegnamento e dell’apprendimento formale e informale e configurandosi come una delle grandi sfide del panorama educativo attuale. Tale scenario impone un ripensamento dei percorsi di insegnamento e apprendimento, privilegiando da un lato una progettazione flessibile e dall’altro una didattica per competenze, orientata a compiti situati, aperti e autentici, che integri efficacemente le tecnologie andando a colmare la distanza tra vita reale e proposte didattiche tradizionali. La natura aperta, collaborativa e sperimentale dei compiti si configura come elemento caratterizzante della Maker Education, in cui i discenti, nella veste di makers, costruiscono in modo attivo ed esperienziale le proprie conoscenze attraverso attività pratiche che combinano le abilità manuali con l’esercizio di competenze digitali. Tale approccio educativo viene infatti considerato come un’estensione tecnologica dell’attivismo, in grado di veicolare lo sviluppo delle competenze STEAM e del XXI secolo, implementando i principi dell’apprendimento project-based e hands-on e promuovendo un processo di progettazione partecipata fortemente “enattivo”. Il presente testo mira a delineare un background teorico relativo alla Maker Culture e agli scenari emergenti nell’ambito della tecnologia per l’educazione, per illustrare poi un piano di sperimentazione messo a punto a partire da tali esigenze e basi teoriche. Il progetto pilota, svoltosi nell’ambito del dottorato di ricerca tra il gennaio del 2021 e l’aprile del 2022, si configura come una proposta di integrazione delle attività making nella didattica curricolare della scuola primaria e secondaria di primo grado al fine di rilevarne l’impatto su attitude verso le STEM e le abilità del XXI secolo degli studenti (Q1) e su autoefficacia scolastica percepita (Q2). Esso è stato in gran parte sviluppato durante il periodo di emergenza sanitaria Covid-19 e risulta suddiviso in due parti, coinvolgendo 53 studenti e cinque insegnanti in un percorso verticale orientato a pratiche laboratoriali e collaborative secondo un approccio multidisciplinare e longitudinale. A tal fine, abbiamo proposto sfide autentiche legate ai temi dell’Agenda 2030, volte a richiamare i contenuti curricolari e i contesti di vita degli alunni e a stimolare lo sviluppo delle competenze. Abbiamo inoltre scelto di adottare la Design-Based Implementation Research come principale metodologia di riferimento e di privilegiare una forma di valutazione as learning, rendendo gli studenti partecipi del processo valutativo. La valutazione del progetto è stata perseguita mediante l’utilizzo di strumenti quantitativi e qualitativi. Abbiamo infatti selezionato due questionari validati volti ad indagare le variabili sopra citate, da somministrare ad inizio e conclusione delle due fasi di progetto. Nel corso di ogni incontro, gli studenti hanno inoltre compilato dei diari di bordo con autovalutazioni e sulla base di questi ultimi è stata co-progettata con i docenti una rubric valutativa. Infine, al termine della prima parte, i docenti sono stati coinvolti in un focus group. Il progetto ci ha consentito di impattare sulle life skills degli studenti, sollecitando le tre aree interconnesse di competenza delineate nell’European Framework “LifeComp” del 2020 e quelle descritte dal World Economic Forum nel 2015. Nei vari confronti pre-post, le abilità del XXI secolo hanno ottenuto i punteggi più elevati rispetto alle aree STEM indagate dal Q1. Se nei pre-post delle due parti notiamo uno sviluppo più consistente delle abilità legate alla sfera interpersonale, dal confronto più esteso emerge un rilevante incremento anche di quelle legate alla sfera personale. Le aree di miglioramento costanti sono riferibili alle abilità organizzative e di leadership, come confermato dagli esiti del Q2 sulle abilità per l’apprendimento autoregolato. Rispetto all’attitude verso le discipline STEM, gli studenti hanno mostrato una propensione più marcata per i campi dell’ingegneria e della tecnologia. Tuttavia, in tutti i confronti emerge un’attitude elevata verso le prospettive di miglioramento dell’andamento disciplinare nell’ambito matematico-scientifico e un progressivo sviluppo degli item relativi all’uso avanzato delle discipline in un futuro impiego. Infine, gli alunni hanno accresciuto anche la loro autoefficacia percepita verso le discipline scolastiche non attinenti all’ambito STEM. I diari di bordo hanno posto ulteriore enfasi sullo sviluppo delle life skills degli studenti. In entrambe le parti del progetto, gli studenti mostrano dei buoni o ottimi livelli di autoefficacia rispetto al lavorare bene in gruppo, comunicare con chiarezza le proprie idee e controllare le emozioni nel confronto con gli altri. Rispetto all’intero percorso, i punteggi medi più elevati si riscontrano per l’utilizzo efficace di strumenti e informazioni e la capacità di lavorare bene in gruppo. Gli alunni hanno mostrato una consapevolezza sempre maggiore dei loro limiti e dei loro traguardi, ponendo il focus principalmente sulle proprie capacità relazionali, a conferma dell’impronta fortemente sociale delle attività making, ma anche su aspetti legati alla sfera personale e a quella dell’imparare ad imparare. La maggioranza dei propositi di miglioramento avanzati verteva infatti sulle dinamiche comunicative e collaborative all’interno del gruppo, oltre che sulla gestione delle risorse e dei tempi. Molte di queste osservazioni coincidono con quelle riferite dalle insegnanti in occasione del focus group, risultate estremamente preziose per una rimodulazione del percorso nell’ottica di una maggiore funzionalità e sostenibilità. L’impatto positivo su autoefficacia e self-confidence degli studenti può ricondursi primariamente alla possibilità di assumere il ruolo di agenti attivi, incorporando i propri interessi e repertori di pratica e consolidando la tendenza al cosiddetto authorship learning. La tecnologia si è rivelata un prezioso strumento per apprendere numerosi concetti curricolari, ma soprattutto per consentire agli studenti di lavorare sulla loro creatività e sulla capacità di progettare, costruire, collaborare e rivedere. Inoltre, il collegamento diretto con problemi reali e la possibilità di ipotizzare, anticipare possibili scenari, testare e riformulare hanno fornito un forte stimolo per le competenze di problem-solving e problem-posing e la costruzione di nuovi significati. Ciò ha a sua volta favorito il coinvolgimento dei giovani alunni in un apprendimento più profondo delle STEM e un accesso “facilitato” e alternativo alla conoscenza scientifica. Molti dei vantaggi educativi ricondotti all’approccio Maker hanno dunque trovato riscontro positivo negli esiti del progetto. Gli spazi maker si sono rivelati ambienti di apprendimento generativi di competenze, di nuove modalità di inclusione e di opportunità di innovazione scolastica. Le esperienze raccolte e il progetto pilota si pongono l’obiettivo di avviare un processo di ripensamento e di riflessione sulle correnti pratiche educative, che appaiono ancora troppo spesso ancorate a schemi tradizionali poco conformi alla società attuale, caratterizzata da rapidi mutamenti e complessità. Il fine ultimo è indubbiamente quello di porre in evidenza luci e ombre, potenzialità e sfide di un approccio innovativo e “trasformativo” della didattica tradizionale, segnando un passo avanti nella ricerca in ambito educativo e individuando al contempo future direzioni da perseguire ed indagare.
Make it happen. L’approccio Maker per ripensare l’educazione nell’era post-digitale / Gratani, Francesca. - (2023).
Make it happen. L’approccio Maker per ripensare l’educazione nell’era post-digitale
GRATANI FRANCESCA
2023-01-01
Abstract
Today’s education systems have to deal with elements of complexity resulting from the rapid transformations of contemporary society. Employability and professional skills have evolved considerably since the beginning of the 21st century, with an emphasis on creativity, design, and engineering processes. The post-digital has “penetrated” the pedagogical process, breaking the boundaries of formal and informal teaching and learning and becoming one of the great challenges of today’s educational landscape. This scenario calls for a rethinking of teaching and learning paths, emphasizing flexible design and competence-based didactics, oriented towards situated, open, and authentic tasks, and effectively integrating technologies to bridge the gap between real life and traditional didactic proposals. Open, collaborative, and experimental tasks are distinctive features of Maker Education, in which learners, as makers, actively construct their own knowledge through practical activities that combine manual and digital skills. Indeed, this educational approach is considered as a technological extension of activism, capable of conveying the development of STEAM and 21st century skills, implementing the principles of project-based and hands-on learning and promoting a strongly "enactive" participatory design process. This text aims to outline a theoretical background on Maker Culture and emerging scenarios in the field of technology for education, and then illustrate an experimentation plan developed from these needs and theoretical foundations. The pilot project, run as a PhD project between January 2021 and April 2022, provided a proposal for integrating making activities into the curricular teaching of primary and secondary schools to detect their impact on students’ attitude towards STEM and 21st century skills (Q1) and perceived school self-efficacy (Q2). It was mainly developed during the Covid-19 health emergency period and is divided into two parts, involving 53 students and five teachers in a vertical pathway oriented towards laboratory and collaborative practices following a multidisciplinary and longitudinal approach. To this end, we proposed authentic challenges related to the topics of the 2030 Agenda, designed to link with the curricular content and students’ life contexts and foster the development of skills. We also chose to adopt Design-Based Implementation Research as the main methodology and to promote a form of assessment ‘as’ learning, making students involved in the assessment process. Project evaluation was conducted using quantitative and qualitative data collection tools. Indeed, we selected two validated questionnaires aimed at investigating the above-mentioned variables, to be administered at the beginning and end of the two project phases. During each meeting, the students also filled in logbooks with self-assessments and, based on these, we co-designed an assessment rubric with the teachers. Finally, at the end of the first part, the teachers were involved in a focus group. The project had an impact on students’ life skills, eliciting the three interconnected areas of competence outlined in the 2020 European Framework ‘LifeComp’ and those described by the World Economic Forum in 2015. In the various pre-post comparisons, 21st century skills scored higher than the STEM areas investigated by Q1. While the pre-posts of the two parts show a more consistent development of skills related to the interpersonal sphere, the extended comparison also shows a significant increase in skills related to the personal sphere. The consistent areas of improvement relate to organizational and leadership skills, as confirmed by the results of Q2 on self-regulated learning skills. Regarding attitude towards STEM subjects, students showed a more pronounced leaning towards the fields of engineering and technology. However, in all comparisons, we found a high attitude towards the perspectives of improved subject performance in the mathematical-scientific fields and a progressive development of the items related to advanced use of subjects in future employment. Finally, the students also increased their perceived self-efficacy towards non-STEM school subjects. The logbooks placed further emphasis on the development of the students’ life skills. In both parts of the project, the students show good to very good levels of self-efficacy in working well in groups, communicating their ideas clearly, and controlling their emotions when interacting with others. Compared to the whole course, the highest average scores are found for the effective use of tools and information and the ability to work well in a group. The students showed an increasing awareness of their limits and goals, focusing mainly on their interpersonal skills, confirming the strongly social character of the making activities, but also on personal and learning-to-learn aspects. In fact, most of the students’ suggestions for improvement concerned communication and collaboration dynamics within the group, as well as resource and time management. Many of these observations coincide with those reported by the teachers during the focus group, which turned out to be extremely precious in redesigning the pathway with a view to greater functionality and sustainability. The positive impact on students’ self-efficacy and self-confidence can primarily be explained by the possibility of being active agents, incorporating their own interests and practices and consolidating the tendency towards so-called authorship learning. Technology proved to be a valuable tool for learning many curricular concepts, but especially for enabling students to work on their creativity and ability to design, build, collaborate, and revise. Moreover, the direct link with real problems and the possibility to hypothesize, anticipate possible scenarios, test, and reformulate provided a strong stimulus for problem-solving and problem-posing skills and the construction of new understandings. This in turn fostered “facilitated” and alternative access to scientific knowledge and young students’ involvement in deeper STEM learning. Many of the educational benefits attributed to the Maker approach were thus positively reflected in the project outcomes. Makerspaces proved to be generative learning environments for skills, new modes of inclusion, and opportunities for school innovation. The experiences gathered and the pilot project aim to initiate a process of rethinking and reflection on current educational practices, which still appear too often anchored to traditional schemes that no longer conform to today’s society, characterized by rapid change and complexity. The aim is undoubtedly to highlight the lights and shadows, potential and challenges of an innovative and “transformative” approach to traditional didactics, marking a step forward in educational research while identifying future directions to pursue and investigate.File | Dimensione | Formato | |
---|---|---|---|
TESI PHD_1.12.22_F.GRATANI.pdf
accesso aperto
Descrizione: Make it happen. L’approccio Maker per ripensare l’educazione nell’era post-digitale
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
6.23 MB
Formato
Adobe PDF
|
6.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.