Predictive maintenance on infrastructures is currently a hot topic. Its importance is proportional to the damages resulting from the collapse of the infrastructure. Bridges, dams and tunnels are placed on top on the scale of severity of potential damages due to the fact that they can cause loss of lives. Traditional inspection methods are not objective, tied to the inspector’s experience and require human presence on site. To overpass the limits of the current technologies and methods, the authors of this paper developed a unique new concept: a remote visual inspection system to perform predictive maintenance on infrastructures such as bridges. This is based on the fusion between advanced robotic technologies and the Automated Visual Inspection that guarantees objective results, high-level of safety and low processing time of the results.

A Novel Remote Visual Inspection System for Bridge Predictive Maintenance

Mancini A.;Sasso M.;Frontoni E.;
2022-01-01

Abstract

Predictive maintenance on infrastructures is currently a hot topic. Its importance is proportional to the damages resulting from the collapse of the infrastructure. Bridges, dams and tunnels are placed on top on the scale of severity of potential damages due to the fact that they can cause loss of lives. Traditional inspection methods are not objective, tied to the inspector’s experience and require human presence on site. To overpass the limits of the current technologies and methods, the authors of this paper developed a unique new concept: a remote visual inspection system to perform predictive maintenance on infrastructures such as bridges. This is based on the fusion between advanced robotic technologies and the Automated Visual Inspection that guarantees objective results, high-level of safety and low processing time of the results.
2022
MDPI
Internazionale
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/305166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 17
social impact