Background and objective: Alzheimer's disease accounts for approximately 70% of all dementia cases. Cortical and hippocampal atrophy caused by Alzheimer's disease can be appreciated easily from a T1-weighted structural magnetic resonance scan. Since a timely therapeutic intervention during the initial stages of the syndrome has a positive impact on both disease progression and quality of life of af-fected subjects, Alzheimer's disease diagnosis is crucial. Thus, this study relies on the development of a robust yet lightweight 3D framework, Brain-on-Cloud, dedicated to efficient learning of Alzheimer's disease-related features from 3D structural magnetic resonance whole-brain scans by improving our re-cent convolutional long short-term memory-based framework with the integration of a set of data han-dling techniques in addition to the tuning of the model hyper-parameters and the evaluation of its diag-nostic performance on independent test data. Methods: For this objective, four serial experiments were conducted on a scalable GPU cloud service. They were compared and the hyper-parameters of the best experiment were tuned until reaching the best-performing configuration. In parallel, two branches were designed. In the first branch of Brain-on-Cloud, training, validation and testing were performed on OASIS-3. In the second branch, unenhanced data from ADNI-2 were employed as independent test set, and the diagnostic performance of Brain-on-Cloud was evaluated to prove its robustness and generalization capability. The prediction scores were computed for each subject and stratified according to age, sex and mini mental state examination. Results: In its best guise, Brain-on-Cloud is able to discriminate Alzheimer's disease with an accuracy of 92% and 76%, sensitivity of 94% and 82%, and area under the curve of 96% and 92% on OASIS-3 and independent ADNI-2 test data, respectively. Conclusions: Brain-on-Cloud shows to be a reliable, lightweight and easily-reproducible framework for automatic diagnosis of Alzheimer's disease from 3D structural magnetic resonance whole-brain scans, performing well without segmenting the brain into its portions. Preserving the brain anatomy, its appli-cation and diagnostic ability can be extended to other cognitive disorders. Due to its cloud nature, com-putational lightness and fast execution, it can also be applied in real-time diagnostic scenarios providing prompt clinical decision support. (c) 2022 Elsevier B.V. All rights reserved.

Brain-on-Cloud for automatic diagnosis of Alzheimer's disease from 3D structural magnetic resonance whole-brain scans

Sernani, Paolo;
2022-01-01

Abstract

Background and objective: Alzheimer's disease accounts for approximately 70% of all dementia cases. Cortical and hippocampal atrophy caused by Alzheimer's disease can be appreciated easily from a T1-weighted structural magnetic resonance scan. Since a timely therapeutic intervention during the initial stages of the syndrome has a positive impact on both disease progression and quality of life of af-fected subjects, Alzheimer's disease diagnosis is crucial. Thus, this study relies on the development of a robust yet lightweight 3D framework, Brain-on-Cloud, dedicated to efficient learning of Alzheimer's disease-related features from 3D structural magnetic resonance whole-brain scans by improving our re-cent convolutional long short-term memory-based framework with the integration of a set of data han-dling techniques in addition to the tuning of the model hyper-parameters and the evaluation of its diag-nostic performance on independent test data. Methods: For this objective, four serial experiments were conducted on a scalable GPU cloud service. They were compared and the hyper-parameters of the best experiment were tuned until reaching the best-performing configuration. In parallel, two branches were designed. In the first branch of Brain-on-Cloud, training, validation and testing were performed on OASIS-3. In the second branch, unenhanced data from ADNI-2 were employed as independent test set, and the diagnostic performance of Brain-on-Cloud was evaluated to prove its robustness and generalization capability. The prediction scores were computed for each subject and stratified according to age, sex and mini mental state examination. Results: In its best guise, Brain-on-Cloud is able to discriminate Alzheimer's disease with an accuracy of 92% and 76%, sensitivity of 94% and 82%, and area under the curve of 96% and 92% on OASIS-3 and independent ADNI-2 test data, respectively. Conclusions: Brain-on-Cloud shows to be a reliable, lightweight and easily-reproducible framework for automatic diagnosis of Alzheimer's disease from 3D structural magnetic resonance whole-brain scans, performing well without segmenting the brain into its portions. Preserving the brain anatomy, its appli-cation and diagnostic ability can be extended to other cognitive disorders. Due to its cloud nature, com-putational lightness and fast execution, it can also be applied in real-time diagnostic scenarios providing prompt clinical decision support. (c) 2022 Elsevier B.V. All rights reserved.
2022
ELSEVIER IRELAND LTD
Internazionale
https://www.sciencedirect.com/science/article/abs/pii/S0169260722005727?via=ihub
File in questo prodotto:
File Dimensione Formato  
Tomassini_brainoncloud_2022.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/303729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact