The current ML approaches do not fully focus to answer a still unresolved and topical challenge, namely the prediction of priorities of COVID-19 vaccine administration. Thus, our task includes some additional methodological challenges mainly related to avoiding unwanted bias while handling categorical and ordinal data with a highly imbalanced nature. Hence, the main contribution of this study is to propose a machine learning algorithm, namely Hierarchical Priority Classification eXtreme Gradient Boosting for priority classification for COVID-19 vaccine administration using the Italian Federation of General Practitioners dataset that contains Electronic Health Record data of 17k patients. We measured the effectiveness of the proposed methodology for classifying all the priority classes while demonstrating a significant improvement with respect to the state of the art. The proposed ML approach, which is integrated into a clinical decision support system, is currently supporting General Pracitioners in assigning COVID-19 vaccine administration priorities to their assistants.

A Unified Hierarchical XGBoost model for classifying priorities for COVID-19 vaccination campaign

Romeo L.;Frontoni E.
2022-01-01

Abstract

The current ML approaches do not fully focus to answer a still unresolved and topical challenge, namely the prediction of priorities of COVID-19 vaccine administration. Thus, our task includes some additional methodological challenges mainly related to avoiding unwanted bias while handling categorical and ordinal data with a highly imbalanced nature. Hence, the main contribution of this study is to propose a machine learning algorithm, namely Hierarchical Priority Classification eXtreme Gradient Boosting for priority classification for COVID-19 vaccine administration using the Italian Federation of General Practitioners dataset that contains Electronic Health Record data of 17k patients. We measured the effectiveness of the proposed methodology for classifying all the priority classes while demonstrating a significant improvement with respect to the state of the art. The proposed ML approach, which is integrated into a clinical decision support system, is currently supporting General Pracitioners in assigning COVID-19 vaccine administration priorities to their assistants.
2022
Elsevier Ltd
Internazionale
File in questo prodotto:
File Dimensione Formato  
A Unified Hierarchical XGBoost model for classifying priorities for COVID-19 vaccination campaign.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/303589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact