Smart homes play a strategic role for improving life quality of people, enabling to monitor people at home with numerous intelligent devices. Sensors can be installed to provide a continuous assistance without limiting the resident’s daily routine, giving her/him greater comfort, well-being and safety. This paper is based on the development of domestic technological solutions to improve the life quality of citizens and monitor the users and the domestic environment, based on features extracted from the collected data. The proposed smart sensing architecture is based on an integrated sensor network to monitor the user and the environment to derive information about the user’s behavior and her/his health status. The proposed platform includes biomedical, wearable, and unobtrusive sensors for monitoring user’s physiological parameters and home automation sensors to obtain information about her/his environment. The sensor network stores the heterogeneous data both locally and remotely in Cloud, where machine learning algorithms and data mining strategies are used for user behavior identification, classification of user health conditions, classification of the smart home profile, and data analytics to implement services for the community. The proposed solution has been experimentally tested in a pilot study based on the development of both sensors and services for elderly users at home.

A Smart Sensing Architecture for Domestic Monitoring: Methodological Approach and Experimental Validation

Frontoni, Emanuele;Romeo, Luca;
2018-01-01

Abstract

Smart homes play a strategic role for improving life quality of people, enabling to monitor people at home with numerous intelligent devices. Sensors can be installed to provide a continuous assistance without limiting the resident’s daily routine, giving her/him greater comfort, well-being and safety. This paper is based on the development of domestic technological solutions to improve the life quality of citizens and monitor the users and the domestic environment, based on features extracted from the collected data. The proposed smart sensing architecture is based on an integrated sensor network to monitor the user and the environment to derive information about the user’s behavior and her/his health status. The proposed platform includes biomedical, wearable, and unobtrusive sensors for monitoring user’s physiological parameters and home automation sensors to obtain information about her/his environment. The sensor network stores the heterogeneous data both locally and remotely in Cloud, where machine learning algorithms and data mining strategies are used for user behavior identification, classification of user health conditions, classification of the smart home profile, and data analytics to implement services for the community. The proposed solution has been experimentally tested in a pilot study based on the development of both sensors and services for elderly users at home.
2018
MDPI
Internazionale
http://www.mdpi.com/1424-8220/18/7/2310
File in questo prodotto:
File Dimensione Formato  
sensors-18-02310.pdf

solo utenti autorizzati

Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/291124
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 32
social impact