The number of distributed Photovoltaic (PV) plants that produce electricity has been significantly increased, and issue of monitoring and maintaining a PV plant has become of great importance and involves many challenges as efficiency, reliability, safety, and stability. This paper presents the novel approach to estimate the PV cells degradations with DCNNs. While many studies have performed images classification, to the best of our knowledge, this is the first exploitation of data acquired with a drone equipped with a thermal infrared sensor. The experiments on "Photovoltaic images Dataset", a collected dataset, are presented to show the degradation problem and comprehensively evaluate the method presented in this research. Results in terms of precision, recall and F1-score show the effectiveness and the suitability of the proposed approach.

Deep convolutional neural network for automatic detection of damaged photovoltaic cells

Paolanti M.;
2018-01-01

Abstract

The number of distributed Photovoltaic (PV) plants that produce electricity has been significantly increased, and issue of monitoring and maintaining a PV plant has become of great importance and involves many challenges as efficiency, reliability, safety, and stability. This paper presents the novel approach to estimate the PV cells degradations with DCNNs. While many studies have performed images classification, to the best of our knowledge, this is the first exploitation of data acquired with a drone equipped with a thermal infrared sensor. The experiments on "Photovoltaic images Dataset", a collected dataset, are presented to show the degradation problem and comprehensively evaluate the method presented in this research. Results in terms of precision, recall and F1-score show the effectiveness and the suitability of the proposed approach.
2018
File in questo prodotto:
File Dimensione Formato  
ISPRS2018.pdf

solo utenti autorizzati

Tipologia: Licenza (contratto editoriale)
Licenza: Tutti i diritti riservati
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/291088
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 122
  • ???jsp.display-item.citation.isi??? ND
social impact