Endothelial Dysfunction is achieving increasing importance, because it is strictly related to cardiovascular risks and it provides important prognostic data in addition to the classical ones. This paper introduces a machine learning approach for predicting Endothelial Dysfunction. The approach was applied and tested on a newly collected dataset, 'Endothelial Dysfunction Dataset (EDD)' and several machine learning algorithms are compared. This method comprises features related to the anthropometric or pathological characteristics of the analysed subjects. The experiments yield high accuracy, demonstrating the effectiveness and suitability of the proposed approach.

Machine learning-based approaches to analyse and improve the diagnosis of endothelial dysfunction

Paolanti M.;Romeo L.;Frontoni E.
2018-01-01

Abstract

Endothelial Dysfunction is achieving increasing importance, because it is strictly related to cardiovascular risks and it provides important prognostic data in addition to the classical ones. This paper introduces a machine learning approach for predicting Endothelial Dysfunction. The approach was applied and tested on a newly collected dataset, 'Endothelial Dysfunction Dataset (EDD)' and several machine learning algorithms are compared. This method comprises features related to the anthropometric or pathological characteristics of the analysed subjects. The experiments yield high accuracy, demonstrating the effectiveness and suitability of the proposed approach.
2018
978-1-5386-4643-4
File in questo prodotto:
File Dimensione Formato  
MESA2018_endothelial.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati
Dimensione 207.1 kB
Formato Adobe PDF
207.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/291031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact