Human trajectory prediction is an important topic in several application domains, ranging from self-driving cars to environment design and planning, from socially-aware robots to intelligent tracking systems. This complex subject comes with different challenges, such as human-space interaction, human-human interaction, multimodality, and generalizability. Currently, these challenges, especially generalizability, have not been completely explored by state-of-the-art works. This work attempts to fill this gap by proposing and defining new methods and metrics to help understand trajectories. In particular, new deep learning models based on Long Short-Term Memory and Generative Adversarial Network architectures are used in both unimodal and multimodal contexts. These approaches are evaluated with new error metrics, which normalize some biases in standard metrics. Tests have been assessed using newly collected datasets characterized by a higher diversity and lower linearity than those used in state-of-the-art works. The results prove that the proposed models and datasets are comparable to and yield better generalizability than state-of-the-art works. Moreover, we also prove that our datasets better represent multimodal scenarios (allowing for multiple possible behaviors) and that human trajectories are moderately influenced by their spatial region and slightly influenced by their date and time.

Human trajectory prediction and generation using LSTM models and GANs

Paolanti M.;Frontoni E.
2021-01-01

Abstract

Human trajectory prediction is an important topic in several application domains, ranging from self-driving cars to environment design and planning, from socially-aware robots to intelligent tracking systems. This complex subject comes with different challenges, such as human-space interaction, human-human interaction, multimodality, and generalizability. Currently, these challenges, especially generalizability, have not been completely explored by state-of-the-art works. This work attempts to fill this gap by proposing and defining new methods and metrics to help understand trajectories. In particular, new deep learning models based on Long Short-Term Memory and Generative Adversarial Network architectures are used in both unimodal and multimodal contexts. These approaches are evaluated with new error metrics, which normalize some biases in standard metrics. Tests have been assessed using newly collected datasets characterized by a higher diversity and lower linearity than those used in state-of-the-art works. The results prove that the proposed models and datasets are comparable to and yield better generalizability than state-of-the-art works. Moreover, we also prove that our datasets better represent multimodal scenarios (allowing for multiple possible behaviors) and that human trajectories are moderately influenced by their spatial region and slightly influenced by their date and time.
2021
Elsevier Ltd
Internazionale
File in questo prodotto:
File Dimensione Formato  
Rossi_trajectory.pdf

solo utenti autorizzati

Tipologia: Licenza (contratto editoriale)
Licenza: DRM non definito
Dimensione 929.75 kB
Formato Adobe PDF
929.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/286011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 52
social impact