A mere hyperbolic law, like the Zipf's law power function, is often inadequate to describe rank-size relationships. An alternative theoretical distribution is proposed based on theoretical physics arguments starting from the Yule-Simon distribution. A modeling is proposed leading to a universal form. A theoretical suggestion for the best (or optimal) distribution, is provided through an entropy argument. The ranking of areas through the number of cities in various countries and some sport competition ranking serves for the present illustrations.

A universal rank-size law

CERQUETI, ROY;
2016-01-01

Abstract

A mere hyperbolic law, like the Zipf's law power function, is often inadequate to describe rank-size relationships. An alternative theoretical distribution is proposed based on theoretical physics arguments starting from the Yule-Simon distribution. A modeling is proposed leading to a universal form. A theoretical suggestion for the best (or optimal) distribution, is provided through an entropy argument. The ranking of areas through the number of cities in various countries and some sport competition ranking serves for the present illustrations.
2016
Public Library of Science
Internazionale
File in questo prodotto:
File Dimensione Formato  
journal.pone.0166011.PDF

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 4.79 MB
Formato Adobe PDF
4.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/234670
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 37
social impact