In recent years the interest of the investors in efficient methods for the forecasting price trend of a share in financial markets has grown steadily. The aim is to accurately forecast the future behavior of the market in order to identificate the so-called "correct timing". In this paper we analyze three different approaches for forecasting financial data: Autoregression, artificial neural networks and support vector machines and we will determine potentials and limits of these methods. Application to the Italian financial market is also presented. ©ICS AS CR 2006

Autoregression and artificial Neural Networks for Financial Market Forecast

QUARANTA, ANNA GRAZIA
2006-01-01

Abstract

In recent years the interest of the investors in efficient methods for the forecasting price trend of a share in financial markets has grown steadily. The aim is to accurately forecast the future behavior of the market in order to identificate the so-called "correct timing". In this paper we analyze three different approaches for forecasting financial data: Autoregression, artificial neural networks and support vector machines and we will determine potentials and limits of these methods. Application to the Italian financial market is also presented. ©ICS AS CR 2006
Institute of Computer Science CAS and Czech Technical University
Internazionale
File in questo prodotto:
File Dimensione Formato  
DeLeone_Marchitto_Quaranta_NNW.pdf

non disponibili

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 746.77 kB
Formato Adobe PDF
746.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/220410
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact