In recent years the interest of the investors in efficient methods for the forecasting price trend of a share in financial markets has grown steadily. The aim is to accurately forecast the future behavior of the market in order to identificate the so-called "correct timing". In this paper we analyze three different approaches for forecasting financial data: Autoregression, artificial neural networks and support vector machines and we will determine potentials and limits of these methods. Application to the Italian financial market is also presented. ©ICS AS CR 2006
Autoregression and artificial Neural Networks for Financial Market Forecast
QUARANTA, ANNA GRAZIA
2006-01-01
Abstract
In recent years the interest of the investors in efficient methods for the forecasting price trend of a share in financial markets has grown steadily. The aim is to accurately forecast the future behavior of the market in order to identificate the so-called "correct timing". In this paper we analyze three different approaches for forecasting financial data: Autoregression, artificial neural networks and support vector machines and we will determine potentials and limits of these methods. Application to the Italian financial market is also presented. ©ICS AS CR 2006File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DeLeone_Marchitto_Quaranta_NNW.pdf
solo utenti autorizzati
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
DRM non definito
Dimensione
746.77 kB
Formato
Adobe PDF
|
746.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.