This paper explores the relationship between the inner economical structure of communities and their population distribution through a rank–rank analysis of official data, along statistical physics ideas within two techniques. The data is taken on Italian cities. The analysis is performed both at a global (national) and at a more local (regional) level in order to distinguish ‘macro’ and ‘micro’ aspects. First, the rank-size rule is found not to be a standard power law, as in many other studies, but a doubly decreasing power law. Next, the Kendall τ and the Spearman ρ rank correlation coefficients which measure pair concordance and the correlation between fluctuations in two rankings, respectively,—as a correlation function does in thermodynamics, are calculated for finding rank correlation (if any) between demography and wealth. Results show non only global disparities for the whole (country) set, but also (regional) disparities, when comparing the number of cities in regions, the number of inhabitants in cities and that in regions, as well as when comparing the aggregated tax income of the cities and that of regions. Different outliers are pointed out and justified. Interestingly, two classes of cities in the country and two classes of regions in the country are found. ‘Common sense’ social, political, and economic considerations sustain the findings. More importantly, the methods show that they allow to distinguish communities, very clearly, when specific criteria are numerically sound. A specific modeling for the findings is presented, i.e. for the doubly decreasing power law and the two phase system, based on statistics theory, e.g. urn filling. The model ideas can be expected to hold when similar rank relationship features are observed in fields. It is emphasized that the analysis makes more sense than one through a Pearson Π value–value correlation analysis

Cross Ranking of Cities and Regions: Population vs. Income

CERQUETI, ROY;
2015-01-01

Abstract

This paper explores the relationship between the inner economical structure of communities and their population distribution through a rank–rank analysis of official data, along statistical physics ideas within two techniques. The data is taken on Italian cities. The analysis is performed both at a global (national) and at a more local (regional) level in order to distinguish ‘macro’ and ‘micro’ aspects. First, the rank-size rule is found not to be a standard power law, as in many other studies, but a doubly decreasing power law. Next, the Kendall τ and the Spearman ρ rank correlation coefficients which measure pair concordance and the correlation between fluctuations in two rankings, respectively,—as a correlation function does in thermodynamics, are calculated for finding rank correlation (if any) between demography and wealth. Results show non only global disparities for the whole (country) set, but also (regional) disparities, when comparing the number of cities in regions, the number of inhabitants in cities and that in regions, as well as when comparing the aggregated tax income of the cities and that of regions. Different outliers are pointed out and justified. Interestingly, two classes of cities in the country and two classes of regions in the country are found. ‘Common sense’ social, political, and economic considerations sustain the findings. More importantly, the methods show that they allow to distinguish communities, very clearly, when specific criteria are numerically sound. A specific modeling for the findings is presented, i.e. for the doubly decreasing power law and the two phase system, based on statistics theory, e.g. urn filling. The model ideas can be expected to hold when similar rank relationship features are observed in fields. It is emphasized that the analysis makes more sense than one through a Pearson Π value–value correlation analysis
2015
IOP Publishing
Internazionale
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/216713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact