A Bayesian approach is developed for selecting the model that is most supported by the data within a class of marginal models for categorical variables, which are formulated through equality and/or inequality constraints on generalized logits (local, global, continuation, or reverse continuation), generalized log-odds ratios, and similar higher-order interactions. For each constrained model, the prior distribution of the model parameters is specified following the encompassing prior approach. Then, model selection is performed by using Bayes factors estimated through an importance sampling method. The approach is illustrated by three applications based on different datasets, which also include explanatory variables. In connection with one of these examples, a sensitivity analysis to the prior specification is also performed.
Bayesian inference through encompassing priors and importance sampling for a class of marginal models for categorical data
SCACCIA, LUISA;
2012-01-01
Abstract
A Bayesian approach is developed for selecting the model that is most supported by the data within a class of marginal models for categorical variables, which are formulated through equality and/or inequality constraints on generalized logits (local, global, continuation, or reverse continuation), generalized log-odds ratios, and similar higher-order interactions. For each constrained model, the prior distribution of the model parameters is specified following the encompassing prior approach. Then, model selection is performed by using Bayes factors estimated through an importance sampling method. The approach is illustrated by three applications based on different datasets, which also include explanatory variables. In connection with one of these examples, a sensitivity analysis to the prior specification is also performed.File | Dimensione | Formato | |
---|---|---|---|
CSDA2012.pdf
accesso aperto
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
DRM non definito
Dimensione
463.77 kB
Formato
Adobe PDF
|
463.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.