The widespread use of the Mixed Multinomial Logit model, in the context of discrete choice data, has made the issue of choosing a mixing distribution very important. The choice of a specific distribution may seriously bias results if that distribution is not suitable for the data. We propose a flexible hierarchical Bayesian approach in which the mixing distribution is approximated through a mixture of normal distributions. Numerical results on a real data set are provided to demonstrate the usefulness of the proposed method.

Bayesian Flexible Modelling of Mixed Logit Models

SCACCIA, LUISA;
2010-01-01

Abstract

The widespread use of the Mixed Multinomial Logit model, in the context of discrete choice data, has made the issue of choosing a mixing distribution very important. The choice of a specific distribution may seriously bias results if that distribution is not suitable for the data. We propose a flexible hierarchical Bayesian approach in which the mixing distribution is approximated through a mixture of normal distributions. Numerical results on a real data set are provided to demonstrate the usefulness of the proposed method.
2010
9783790826036
File in questo prodotto:
File Dimensione Formato  
Paper81.pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 165.34 kB
Formato Adobe PDF
165.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/42649
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact