We develop a Bayesian framework for making inference on a class of marginal models for categorical variables, which is formulated through equality and/or inequality constraints on generalized logits, generalized log-odds ratios and similar higher-order interactions. A Markov chain Monte Carlo (MCMC) algorithm is used for parameters estimation and for computing the Bayes factor between competing models. The approach is illustrated through the application to a well-known dataset on social mobility.

Bayesian inference for marginal models under equality and inequality constraints

SCACCIA, LUISA;
2007-01-01

Abstract

We develop a Bayesian framework for making inference on a class of marginal models for categorical variables, which is formulated through equality and/or inequality constraints on generalized logits, generalized log-odds ratios and similar higher-order interactions. A Markov chain Monte Carlo (MCMC) algorithm is used for parameters estimation and for computing the Bayes factor between competing models. The approach is illustrated through the application to a well-known dataset on social mobility.
2007
9788860560209
File in questo prodotto:
File Dimensione Formato  
cladag2007Francescoshort.pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 133.83 kB
Formato Adobe PDF
133.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/41815
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact