Hidden Markov Models, also known as Markov Switching Models, can be considered an extension of mixture models, allowing for dependent observations. The main problem associated with Hidden Markov Models is represented by the choice of the number of regimes, i.e. the number of the generating data processes, which differ one from another just for the value of the parameters. Applying a hierarchical Bayesian framework, we show that Reversible Jump Markov Chain Monte Carlo techniques can be used to estimate the parameters of the model, as well as the number of regimes, and to simulate the posterior predictive densities of future observations. Assuming a mixture of normal distributions, we estimate all the parameters of the model using a well known exchange rate data set.

Bayesian hidden Markov models for financial data

CASTELLANO, Rosella;SCACCIA, LUISA
2010-01-01

Abstract

Hidden Markov Models, also known as Markov Switching Models, can be considered an extension of mixture models, allowing for dependent observations. The main problem associated with Hidden Markov Models is represented by the choice of the number of regimes, i.e. the number of the generating data processes, which differ one from another just for the value of the parameters. Applying a hierarchical Bayesian framework, we show that Reversible Jump Markov Chain Monte Carlo techniques can be used to estimate the parameters of the model, as well as the number of regimes, and to simulate the posterior predictive densities of future observations. Assuming a mixture of normal distributions, we estimate all the parameters of the model using a well known exchange rate data set.
2010
9783642037382
File in questo prodotto:
File Dimensione Formato  
DAC.pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 886.52 kB
Formato Adobe PDF
886.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/41233
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact