This paper discusses the architecture of a novel digital system designed to support TransDisciplinary (TD) research by fostering collaborative learning and knowledge integration across disciplines. The system integrates three primary components: an ontology, an AI component, and a user interface. The ontology provides a structured framework for organizing and connecting concepts from diverse fields, facilitating the development of TD definitions. The AI component, based on Large Language Models (LLMs), interprets users’ natural language queries, retrieves relevant concepts, and highlights TD relationships. The user interface enables researchers to explore these connections, promoting deeper understanding and collaborative knowledge building. By automating the generation of ontologies and supporting natural language interactions, this system addresses challenges in TD research, such as fragmentation and inefficient communication. It also enhances legal interpretative skills by integrating insights from multiple disciplines, contributing to a more inclusive and human-centered legal system. This paper outlines the system’s architecture, discusses its components, and highlights future research directions.

Combining Large Language Models and ontologies to build a collaborative learning digital environment

Sernani, Paolo;Ferretti, Francesca;Alpini, Arianna
2025-01-01

Abstract

This paper discusses the architecture of a novel digital system designed to support TransDisciplinary (TD) research by fostering collaborative learning and knowledge integration across disciplines. The system integrates three primary components: an ontology, an AI component, and a user interface. The ontology provides a structured framework for organizing and connecting concepts from diverse fields, facilitating the development of TD definitions. The AI component, based on Large Language Models (LLMs), interprets users’ natural language queries, retrieves relevant concepts, and highlights TD relationships. The user interface enables researchers to explore these connections, promoting deeper understanding and collaborative knowledge building. By automating the generation of ontologies and supporting natural language interactions, this system addresses challenges in TD research, such as fragmentation and inefficient communication. It also enhances legal interpretative skills by integrating insights from multiple disciplines, contributing to a more inclusive and human-centered legal system. This paper outlines the system’s architecture, discusses its components, and highlights future research directions.
2025
9791370061661
File in questo prodotto:
File Dimensione Formato  
Sernani_frontespizio_2025.pdf

solo utenti autorizzati

Tipologia: Altro materiale allegato (es. Copertina, Indice, Materiale supplementare, Abstract, Brevetti Spin-off, Start-up etc.)
Licenza: Copyright dell'editore
Dimensione 554.66 kB
Formato Adobe PDF
554.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sernani_indice_2025.pdf

solo utenti autorizzati

Tipologia: Altro materiale allegato (es. Copertina, Indice, Materiale supplementare, Abstract, Brevetti Spin-off, Start-up etc.)
Licenza: Copyright dell'editore
Dimensione 427.97 kB
Formato Adobe PDF
427.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sernani_CombiningLargeLanguageModels_2025.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 900.51 kB
Formato Adobe PDF
900.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/353091
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact