This paper outlines a methodology for Knowledge Extraction from historical literary texts in Italian using a combination of Large Language Models and fine-tuned models for Relation Extraction. The research aims to offer a novel way to extract and represent entities and relations from literary manuscripts in RDF graphs which can be queried and explored.

Leveraging Large Language Models to Generate a Knowledge Graph from Italian Literary Texts

Cristian Santini;Gioele Marozzi;Laura Melosi;Emanuele Frontoni
2024-01-01

Abstract

This paper outlines a methodology for Knowledge Extraction from historical literary texts in Italian using a combination of Large Language Models and fine-tuned models for Relation Extraction. The research aims to offer a novel way to extract and represent entities and relations from literary manuscripts in RDF graphs which can be queried and explored.
2024
File in questo prodotto:
File Dimensione Formato  
BookofAbstracts-DH2024 (1).pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 285.66 MB
Formato Adobe PDF
285.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/340811
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact