Several technological developments like the Internet, mobile devices and Social Networks have spurred the sharing of images in unprecedented volumes, making tagging and commenting a common habit. Despite the recent progress in image analysis, the problem of Semantic Gap still hinders machines in fully understand the rich semantic of a shared photo. In this book, we tackle this problem by exploiting social network contributions. A comprehensive treatise of three linked problems on image annotation is presented, with a novel experimental protocol used to test eleven state-of-the-art methods. Three novel approaches to annotate, under stand the sentiment and predict the popularity of an image are presented. We conclude with the many challenges and opportunities ahead for the multimedia community.
Image Understanding by Socializing the Semantic Gap
Tiberio Uricchio
2017-01-01
Abstract
Several technological developments like the Internet, mobile devices and Social Networks have spurred the sharing of images in unprecedented volumes, making tagging and commenting a common habit. Despite the recent progress in image analysis, the problem of Semantic Gap still hinders machines in fully understand the rich semantic of a shared photo. In this book, we tackle this problem by exploiting social network contributions. A comprehensive treatise of three linked problems on image annotation is presented, with a novel experimental protocol used to test eleven state-of-the-art methods. Three novel approaches to annotate, under stand the sentiment and predict the popularity of an image are presented. We conclude with the many challenges and opportunities ahead for the multimedia community.File | Dimensione | Formato | |
---|---|---|---|
3505_14489.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
3.46 MB
Formato
Adobe PDF
|
3.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.