This work proposes an ethical framework that highlights possible ethical risks in the design and use of deep-learning-based vision systems for monitoring infants’ movements in neonatal intensive care units. We discuss biases and ways to mitigate them for promoting accountable systems in clinical practice.

Accountable Deep-Learning-Based Vision Systems for Preterm Infant Monitoring

S. Tiribelli
2023-01-01

Abstract

This work proposes an ethical framework that highlights possible ethical risks in the design and use of deep-learning-based vision systems for monitoring infants’ movements in neonatal intensive care units. We discuss biases and ways to mitigate them for promoting accountable systems in clinical practice.
2023
File in questo prodotto:
File Dimensione Formato  
Accountable_Deep-Learning-Based_Vision_Systems_for_Preterm_Infant_Monitoring.pdf

solo utenti autorizzati

Descrizione: paper
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/313010
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact