Nowadays, an increasing number of scattering measurements rely on the use of large-scale research facilities, which is usually granted after highly competitive peerreviewing and typically for short-time lapses. The optimal use of the allocated time requires rigorous estimates on the reliability of the data analysis, as inferred from the limited statistical accuracy of the measurement. Bayesian inference approaches can significantly help this endeavor by providing investigators with much-needed guidance under challenging decisions on experimental time management. We propose here a method based on the real-time data analysis of running experiments, which fully exploits the core strengths of Bayes theorem. The procedure is implemented in sequential steps in which the spectral measurement is adjourned by summing to it successive acquisition runs, and the spectral modeling is upgraded accordingly. At each stage, the statistical accuracy of the measurement improves, and a more grounded joint posterior distribution is drawn and used as a prior in the subsequent data acquisition stage. The gradual reduction in the model parameters’ uncertainty down to the targets set a priori by experimenters provides a quantitative “success criterion,” which helps prevent oversampling during acquisition. A similar “on the fly” data modeling, might substantially change the way large-scale facilities operate.

Bayesian Inference as a Tool to Optimize Spectral Acquisition in Scattering Experiments

Luisa Scaccia;
2022-01-01

Abstract

Nowadays, an increasing number of scattering measurements rely on the use of large-scale research facilities, which is usually granted after highly competitive peerreviewing and typically for short-time lapses. The optimal use of the allocated time requires rigorous estimates on the reliability of the data analysis, as inferred from the limited statistical accuracy of the measurement. Bayesian inference approaches can significantly help this endeavor by providing investigators with much-needed guidance under challenging decisions on experimental time management. We propose here a method based on the real-time data analysis of running experiments, which fully exploits the core strengths of Bayes theorem. The procedure is implemented in sequential steps in which the spectral measurement is adjourned by summing to it successive acquisition runs, and the spectral modeling is upgraded accordingly. At each stage, the statistical accuracy of the measurement improves, and a more grounded joint posterior distribution is drawn and used as a prior in the subsequent data acquisition stage. The gradual reduction in the model parameters’ uncertainty down to the targets set a priori by experimenters provides a quantitative “success criterion,” which helps prevent oversampling during acquisition. A similar “on the fly” data modeling, might substantially change the way large-scale facilities operate.
2022
978-1-80356-045-8
File in questo prodotto:
File Dimensione Formato  
DeFrancesco_Bayesian-Spectral-Acquisition_2022.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: DRM non definito
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/296187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact