Business models may be considered as “cognitive” devices since a deep level of knowledge about customers, suppliers, and competitors is needed for their development. Recent studies show that data-mining tools produce a positive interaction with business models, empowering the strategic performance capabilities that drive the achievement of competitive advantage. The present paper aims to discuss whether the adoption in a real context of data mining in support of business modeling may be enabled or hindered by organizational heterogeneity. The Structured Neural Network, adopted in the case study, is particularly suitable in support of strategic management, since it stimulates the convergence of personal knowledge and beliefs toward the exploitation of the key concepts and the cause-and-effect relations needed for the design of the business model. Furthermore, it provides a fact-based test for its robustness. The results provide both scientific and practical implications.

Data-mining tools for business model design: The impact of organizational heterogeneity

CASTELLANO, NICOLA GIUSEPPE;DEL GOBBO, ROBERTO
2017-01-01

Abstract

Business models may be considered as “cognitive” devices since a deep level of knowledge about customers, suppliers, and competitors is needed for their development. Recent studies show that data-mining tools produce a positive interaction with business models, empowering the strategic performance capabilities that drive the achievement of competitive advantage. The present paper aims to discuss whether the adoption in a real context of data mining in support of business modeling may be enabled or hindered by organizational heterogeneity. The Structured Neural Network, adopted in the case study, is particularly suitable in support of strategic management, since it stimulates the convergence of personal knowledge and beliefs toward the exploitation of the key concepts and the cause-and-effect relations needed for the design of the business model. Furthermore, it provides a fact-based test for its robustness. The results provide both scientific and practical implications.
2017
978-3-319-49537-8
978-3-319-49538-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/238177
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact