We propose a nonparametric Item Response Theory model for dichotomously scored items in a Bayesian framework. Partitions of the items are defined on the basis of inequality constraints among the latent class success probabilities. A Reversible Jump type algorithm is described for sampling from the posterior distribution. A consequence is the possibility to make inference on the number of dimensions (i.e., number of groups of items measuring the same latent trait) and to cluster items when unidimensionality is violated.

A nonparametric multidimensional latent class IRT model in a Bayesian framework

SCACCIA, LUISA
2013-01-01

Abstract

We propose a nonparametric Item Response Theory model for dichotomously scored items in a Bayesian framework. Partitions of the items are defined on the basis of inequality constraints among the latent class success probabilities. A Reversible Jump type algorithm is described for sampling from the posterior distribution. A consequence is the possibility to make inference on the number of dimensions (i.e., number of groups of items measuring the same latent trait) and to cluster items when unidimensionality is violated.
2013
9788834325568
File in questo prodotto:
File Dimensione Formato  
sis2013.pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 130.48 kB
Formato Adobe PDF
130.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/169821
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact