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Abstract

Markov chain theory is proving to be a powerful approach to bootstrap �nite states processes, especially
where time dependence is non linear. In this work we extend such approach to bootstrap discrete time
continuous-valued processes. To this purpose we solve a minimization problem to partition the state space
of a continuous-valued process into a �nite number of intervals or unions of intervals (i.e. its states) and
identify the time lags which provide \memory" to the process. A distance is used as objective function to
stimulate the clustering of the states having similar transition probabilities. The problem of the exploding
number of alternative partitions in the solution space (which grows with the number of states and the
order of the Markov chain) is addressed through a Tabu Search algorithm. The method is applied to
bootstrap the series of the German and Spanish electricity prices. The analysis of the results con�rms
the good consistency properties of the method we propose.
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1 Introduction

Bootstrapping is a method largely applied in di�erent research areas ranging from natural to social sciences
as the special issue of Statistical Science in 2003 (vol. 18, no. 2) has shown. After the initial proposal
by Efron (1979) several developments have appeared in the literature. A group of bootstrap methods
which have followed the seminal idea of Efron and have been largely applied in the economic and �nance
literature is based on re-sampling of a model errors (e.g., see Freedman 1984, Freedman and Peters 1984,
Efron and Tibshirani 1993 for a methodological discussion and Brock et al. 1992 for an application to
�nancial markets). This approach su�ers in general of model misspeci�cation risk.
B�uhlmann (2002) compares the block, the sieve, and the local methods of bootstrapping. These methods
are nonparametric, model-free and assume that observations can be (time) dependent, as opposed to
the original solution advanced by Efron which requires that observations are independent. In another
work, Guastaroba et al. (2009) compare several bootstrap and parametric simulation methods to generate
scenarios embedding the relevant features of stock market returns. They �nd that the risk-return trade-o�
for the portfolios optimized under the di�erent scenarios is the best out-of-sample when block bootstrap
is used.
Among the nonparametric bootstrap methods, a relatively recent method has appeared in the literature,
which is based on the Markov chains of order k. In their work Anatolyev and Vasnev (2002) propose a
method for a �nite state discrete time Markov chain, where the \next step" of the bootstrap procedure
is driven by transition probabilities whose conditional event is a trajectory observed on the last k time
lags. The strength points of this method are linked to its natural ability to capture arbitrary dependency
structures of a time series. Such an advantage is of primary importance, since it relieves a researcher of
the responsibility of assuming a model, of estimating complex parameters, and of losing important parts
of those structures.
In this paper we apply Markov chain theory to bootstrap series of processes taking continuous values. To
the best of our knowledge, this is the �rst attempt to extend Markov chain bootstrapping in this sense.
Some major di�culties have to be solved.
A �rst and obvious one is that of discretizing the state space of the process into a �nite number of \relevant
states". In other words, the continuous state space must be partitioned into a number of states which are
representative of the levels where the process modi�es signi�cantly its dynamics (i.e. its expected value,
its variance, etc.). Previous literature adopting Markov chain bootstrap methods, such as papers that
appeared in the area of information theory (e.g., see B�uhlmann and Wyner 1999, B�uhlmann 2002, Zhu
et al. 2002), has focused on discrete-valued processes with a �nite and �xed number of states, which are
all assumed to be relevant.
A second relevant issue is that of assessing the order of the process, i.e. the length of its memory. Several
contributions have addressed the problem of identifying the \true" order of a Markov chain, proposing
occasionally quite sophisticated methods. In this sense B�uhlmann and Wyner (1999) and B�uhlmann
(2002) are remarkable works as they allow a process to vary its memory depending on the states that the
process crosses through the time. The authors consider a tree-based representation of the state space of
the Markov chain and propose an algorithm to �nd the minimal state space. Once a distance function
between two probability measures is de�ned, the algorithm prunes iteratively each leaf node if its distance
from the parent node is smaller than a given threshold. As an outcome of the method, the states are kept
distinct following a hierarchical structure based on time lags (e.g., time lags k + 1, k + 2, ::: cannot be
relevant to keep states distinct if time lag k is not).
Cerqueti et al. (2009) advance a method to identify both the relevant states of a process and the relevance
of time lags (without assuming any hierarchical dependence). In particular their approach consists of
letting some initially speci�ed states to group together (and so forming a new larger state) if such states
have similar transition probabilities. The occurrence of few large groups at some time lags (as opposed
to the formation of several small clusters in other time lags) is taken as evidence against the relevance of
those time lags. The authors formulate an optimization problem whose solution space is represented by all
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the feasible partitions which can be obtained from grouping the rows of the original transition probability
matrix. A distance indicator is introduced as the objective function to be minimized. The optimal
solution identi�es the partition which groups the states having the most similar transition probabilities.
A multiplicity constraint is also introduced to avoid that the optimum is found selecting the so called
\singleton partition", which is the partition letting each row to form a one element group.
In this work we tackle a major problem which has remained unsolved in Cerqueti et al. (2009). We refer
in particular to the fast growing number of the possible partitions which can be formed considering a
process with N states and k time lags. Theoretically such number gets large very soon (it is based on
the k-th power of the Bell number of N) and the computing time required to evaluate the entire solution
space goes beyond any acceptable boundary if we just consider the case of 7 states and 5 time lags (i.e.
5:18798E + 14 partitions, corresponding to more than 164; 500 years of computing time, letting 0:01
seconds to compute one solution). A heuristic is therefore required to solve real life instances where it is
common to face bigger cases than the one previously considered. In particular we implement a heuristic
based on a Tabu Search framework.
Partitioning problems are among the most studied in the OR community (e.g., see Anily and Federgruen
1991). In fact, in many important combinatorial optimization problems, such as clustering and bin
packing, an optimal partition into groups has to be determined for a �nite collection of objects. Several
authors have proposed iterative procedures for partitioning objects. For instance the k-means algorithm
introduced by Forgy (1965) and MacQueen (1967), and its variations, based on the idea of assigning each
element to the cluster whose centroid (usually the average value of all the objects in the cluster) is the
nearest considering a given distance measure. Other authors have proposed graph-theoretic approaches
to data clustering (e.g., see Wu and Leahy 1993, and references therein), where the data to be clustered
are represented by vertices of an undirected graph and the cost of an edge connecting any two vertices is
chosen to re
ect the similarity (as de�ned by a given function) between the pair of linked vertices. More
recently, the use of metaheuristics to solve the partitioning problem has been investigated by a number
of authors. For instance, Sung and Jin (2000) design a Tabu Search-based heuristic, whereas Trejos
et al. (2004) implement an Ant Colony algorithm. Ma et al. (2006) use an evolutionary algorithm to
identify clusters of records in a database. Most of the former methods, designed for general partitioning
problems, can be adapted to solve the problem of partitioning a transition probability matrix in the
domain of Markov chains of order one, once a distance measure among transition probabilities has been
de�ned. Other authors have proposed decomposition approaches to solve the problem. Courtois (1977)
advances a decomposition approach that performs �rstly a one-step approximation to obtain the steady
state probability vector by a block diagonal matrix decomposition and then an aggregation method
based on the positive eigenvectors of each block. Takahashi (1984) proposes an algorithm based on the
observation that, given any partition of the state space, the exact Kolmogorov equations of the whole
system can be split into two subsets, one accounting for the links among the partitions (the aggregation
step), the other one accounting only for the links inside the partitions (the disaggregation step). An
iterative numerical technique can then be devised for recursively solving the two sets of equations until
convergence is reached. Spears (1998) proposes an algorithm to compress a transition probability matrix
into a smaller matrix with less states. The choice of which states are worth compressing is based on a
similarity metric that measures the distance between states based on their transition probabilities, i.e.
states with similar transition behaviors are aggregated together to form a new compressed state. Tabu
Search algorithms have shown to be quite appropriate also for solving complex �nancial optimization
problems. As an example, we mention the contributions by Ehrgott et al. (2004) and Woodside-Oriakhi
et al. (2011), where extensions of the classical Markowitz mean-variance portfolio optimization model are
introduced. The proposed models are solved by means of several heuristics, including Tabu Search-based
algorithms.
As previously pointed out, in this paper we consider the problem of �nding the best partitions of the
states for each of the time lags of a Markov chain of order up to k. This represents a constraint which
cannot be (directly) addressed through the aforementioned methods.
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To show the properties of the bootstrapping method proposed here, an application is developed to the
case of electricity prices. Such series are usually considered as \hard cases" in the literature, because of
several features: hourly, weekly, and annual seasonality, strong mean reversion, time varying volatility, and
occasional presence of \spikes" where prices show sudden jumps which are soon followed by symmetrical
reversals. For a review of the di�culties in modeling electricity prices and the literature developed
to solve them, see, for example, Bunn (2004), Huisman and Mahieu (2003), Weron et al. (2004), and
Weron (2006). In this application we generate several bootstrapped series from the Spanish and German
electricity markets and analyze the most relevant parameters of their distributions.
Section 2 of the paper gives the mathematical basis of the problem. Section 3 discusses methodological
aspects of the Tabu Search algorithm and gives details on the bootstrap procedure. Section 4 describes
the application of the method to the price series of the German and the Spanish electricity market. The
computational results are commented in Section 5. Finally, Section 6 provides some concluding remarks.

2 Optimization Model

For the sake of clarity, we introduce the optimization problem in a stepwise form. Appendix A provides
a quick reference summary of some notation introduced in the following.

2.1 Problem description

Consider an evolutive phenomenon taking values in an interval [�; �] � R. Suppose that M consecutive
realizations are observed and let O = (x1; :::; xM ) be the set of these time-ordered observations. O is the
original sample, and the bootstrapped series will be derived from it. De�ne a partition of [�; �] into N
initial states, or intervals, a1; : : : ; aN , such that ai\aj = ?, i 6= j, and

SN
h=1 ah = [�; �], and collect them

in A = fa1; : : : ; aNg.
Consider the observed k-order state (or, simply, k-state) in O starting at time l, and denote it as xl;k =
(xl; :::; xl+k�1). Let us collect all the k-states that can be extracted from O in a set Ok. Therefore Ok
contains M � k + 1 k-states. Since the x's belong to some a's, we can describe a given observed k-state
xl;k through a unique sequence of elements of A, call it ~al;k = (al; :::; al+k�1), where at is an element of
A assigned to time t and t = l; :::; l + k � 1. Let Ak be the set of all the ~al;k. Notice that there is a
one-to-one correspondence between ~al;k and xl;k, because the sequence of values in xl;k and the sequence
of intervals in ~al;k are indexed by the same time. Of course for some di�erent starting times s and l it
can happen that ~as;k � ~al;k, i.e. two k-states replicate. We introduce the set of all the possible k-states
of a's (without any reference to the starting time) and denote it as Ak: this set is the Cartesian product
of A with itself k times. We point out that the cardinality of Ak is Nk. Hence, we have Nk k-states in
Ak, and we will refer to any k-state of Ak as ah;k, with h = 1; :::; N

k.
To proceed, it is useful to recall the basic idea of our problem. The observed sample O can be replicated
by using a k-th order Markov chain fX(t); t � 0g with state space A. If the cardinality of A is large,
the replications may become mathematically hard to treat. We want to gain mathematical tractability
by reducing the cardinality of the state space and by selecting the order k, without losing too much
information. Since the partition of [�; �] is arbitrary, it can be uselessly rich of states. Following the
idea of Cerqueti et al. (2009), we seek to reduce the initial number of states joining them based on their
transition probabilities. As we will see, this objective will be pursued through an optimal search among
the possible partitions of Ak.

2.2 Transition probability matrices

Consider az 2 A, z = 1; : : : ; N , and ah;k = (ahk ; ahk�1 ; : : : ; ah1) 2 Ak, where hw = 1; :::; N points to an
element of A for time lag w of k-state h.
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The transition probability of k-state ah;k to state az is de�ned as:

P (azjah;k) = P (X(t) = azjX(t� 1) = ah1 ; : : : ; X(t� k) = ahk). (1)

The k-th order transition probability matrix of the phenomenon contains the P (azjah;k)'s, for all az 2 A
and ah;k 2 Ak. The empirical frequency of k-state ah;k evolving to state az is denoted as f(azjah;k) and
corresponds to the cardinality of Faz jah;k , where:

Faz jah;k =
n
~al;k : ~al;k � ah;k; al+k � az

o
. (2)

In other words, Faz jah;k is the set of all the observed k-states ~al;k replicating k-state ah;k and evolving to
state az at time l + k.
Based on the de�nition of Ching et al. (2008), we estimate the k-state transition probability of X(t) by
using the empirical frequencies f(azjah;k) related to the observed phenomenon:

P̂ (azjah;k) =
(

f(az jah;k)PN
j=1 f(aj jah;k)

if
PN

j=1 f(aj jah;k) > 0
0 otherwise.

(3)

The estimated k-th order transition probability matrix of the phenomenon contains the P̂ (azjah;k)'s and
is denoted asM.
Now, denote as � the set of the partitions of A. Then, a partition � 2 � can be represented as � =
fA�;1; : : : ; A�;#(�)g, where fA�;qgq=1;:::;#(�) is a partition of nonempty subsets of A and #(�) denotes the
cardinality of set �. Notice that 1 � #(�) � N .
Extending to a multidimensional context, we introduce the set of multidimensional partitions � of Ak

and denote it as �k. This set consists of the k replications of the set � and is used to describe the time
dependent partitions of A. More precisely �k is de�ned as:

�k = f� = (�k; �k�1; : : : ; �1) : �w 2 �; w = 1; : : : ; kg , (4)

where �w, w = 1; : : : ; k, is the unidimensional partition of A referred to time lag w.
The de�nition of the transition probability can be extended to the case where the conditional event is a
class of partition � instead of a k-state. By referring to the probability law P introduced in Eq. (1), we
de�ne:

P (azjA�;h;k) = P (X(t) = azjX(t� 1) 2 A�1;h1 ; : : : ; X(t� k) 2 A�k;hk), (5)

where az 2 A, hw 2 f1; : : : ;#(�w)g, for each w = 1; : : : ; k, and:

A�;h;k = (A�k;hk ; A�k�1;hk�1 ; :::; A�1;h1) � Ak (6)

can be viewed as the h-th class of partition � expressed as an ordered sequence of classes extracted from
partitions �k; �k�1; : : : ; �1.
Probability P (azjA�;h;k) in Eq. (5) is estimated through the empirical frequencies analogously to Eq.
(3):

P̂ (azjA�;h;k) =

8<:
P
i:ai;k2A�;h;k

f(az jai;k)P
i:ai;k2A�;h;k

PN
j=1 f(aj jai;k)

if
P

i:ai;k2A�;h;k

PN
j=1 f(aj jai;k) > 0

0 otherwise.

(7)

Probabilities P̂ (azjA�;h;k)'s generate a new transition matrix.
To simplify the notation, we use hereafter the symbol P to refer both to the transition probabilities P
and to their estimates P̂ .
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2.3 Formalization of the optimal partition problem

We are now able to formalize the optimization problem. Two competing objectives should be pursued:
statistical similarity and multiplicity of the bootstrapped series with respect to the original sample O.
We achieve this aim by de�ning a distance indicator (to take into account similarity) and a multiplicity
measure, both to be calculated on the transition probabilities of the classes of the k-dimensional partition
� 2 �k. A deep discussion on this point is developed in Section 3:1 of Cerqueti et al. (2009).
The distance indicator of partition � is based on the absolute di�erence between the elements of the k-th
order transition probability matrix M. We can de�ne a distance di;j between two k-states ai;k and aj;k
as follows:

di;j :=

NX
z=1

jP (azjai;k)� P (azjaj;k)j .

Notice that similarity of bootstrapped series with respect to the original sample is achieved if ai;k and aj;k
are grouped together when their distance di;j is close to zero. As we shall see, this evidence will drive the
formalization of the optimization problem. The de�nition of distance can be extended to a class A�;h;k
of partition � as follows:

dA�;h;k
:= max

i;j:ai;k;aj;k2A�;h;k

di;j .

Analogously, the distance d� of partition � is given by the average value of its classes distances:

d� :=
1

D
�
#(�)X
h=1

dA�;h;k
�#(A�;h;k) ,

where # (A�;h;k) is the cardinality of partition class A�;h;k and D =
P#(�)

h=1 #(A�;h;k). The absolute
multiplicity measure of partition �, denoted as l�, is based on the size of the partition classes:

l� :=

#(�)X
h=1

#(A�;h;k)
2 .

In our optimization problem we rather apply the relative multiplicity measure m�, i.e. a normalization
of l�:

m� :=

p
l� �

p
D

D �
p
D
,

with D =
P#(�)

h=1 #(A�;h;k). The main properties of d� and m� are introduced and discussed in Sections
3:2 and 3:4 in Cerqueti et al. (2009). It is worth recalling that m� 2 [0; 1], while d� 2 [0; 2] (see
Propositions 4 and 9 in Cerqueti et al. 2009).
We now present the optimization problem based on d� and m�.

De�nition 1 Let us consider 
 2 [0; 1], k� 2 f1; :::; Ng, and �� = (��k� ; ��k��1; : : : ; ��1) 2 �k
�
.

We say that the couple (k�;��) is 
-optimal if and only if it is the solution of the following minimization
problem:

min
(k;�)2N��k

d� (8)

s:t: m� � 
. (9)

The optimal k� represents the optimal order of a Markov chain fX�(t); t � 0g describing the evolutive
phenomenon, while �� is the optimal partition of Ak

�
. Given such optimally chosen Markov chain, the

corresponding k�-th order transition probability matrixM� is estimated by means of Eq. (7).
It will turn out to be useful the interpretation of the results of the optimization problem through the
introduction of the optimal e�cient frontier, de�ned as follows:
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De�nition 2 Set k 2 f1; :::; Ng to a chosen value. The optimal e�cient frontier Fk related to optimiza-
tion problem (8)-(9) is:

Fk :=
[


2[0;1]
f(m�� ; d��) 2 [0; 1]� [0; 2]g ,

and �� is the solution of the problem:

min
�2�k

d�

s:t: m� � 
.

An illustrative example. Consider a Markov chain fX(t); t � 0g of order 2, with state space
A = f1; 2g. For ease of exposition, the two initial states, or intervals, a1 and a2 partitioning the state
space [�; �] of the phenomenon are denoted with 1 and 2, respectively. Assume the following set of time
ordered observations of the phenomenon:

O = (1; 2; 1; 1; 2; 2; 1).

The possible 2-states ah;2 = (ah2 ; ah1) 2 A2 are:

a1;2 = (1; 1), a2;2 = (1; 2), a3;2 = (2; 1), and a4;2 = (2; 2).

LetM denote the 2-state transition probability matrix of the Markov chain approximating the observed
phenomenon. We have:

M =

states az
2-states ah;2 1 2

(1; 1) 0 1
(1; 2) 0:5 0:5
(2; 1) 1 0
(2; 2) 1 0

with z = 1; 2, az 2 A, h = 1; :::; 4.
Our problem is to �nd the optimal partition �� of the states for each time lag. We are faced with a
number of feasible solutions (i.e. partitions):

- �1 =
�
�12; �

1
1

�
= (ff1g ; f2gg ; ff1g ; f2gg) (states separated at time lag 1 and time lag 2: singleton

partition),
- �2 =

�
�22; �

2
1

�
= (f1; 2g ; ff1g ; f2gg) (states separated at time lag 1 and joined at time lag 2),

- �3 =
�
�32; �

3
1

�
= (ff1g ; f2gg ; f1; 2g) (states separated at time lag 2 and joined at time lag 1),

- �4 =
�
�42; �

4
1

�
= (f1; 2g ; f1; 2g) (states joined at time lag 1 and time lag 2: all-comprehensive

partition).
The corresponding transition probability matrices are:

M1 =M =

states az
partition classes A�1;h;2 1 2

fa1;2g 0 1
fa2;2g 0:5 0:5
fa3;2g 1 0
fa4;2g 1 0

,

M2 =

states az
partition classes A�2;h;2 1 2

fa1;2;a3;2g 0:5 0:5
fa2;2;a4;2g 0:67 0:33

,
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M3 =

states az
partition classes A�3;h;2 1 2

fa1;2;a2;2g 0:33 0:67
fa3;2;a4;2g 1 0

,

and

M4 =

states az
partition classes A�4;h;2 1 2

fa1;2;a2;2;a3;2;a4;2g 0:6 0:4

.

Notice that partition �3 is trivially preferred to �1 as it groups the third and fourth 2-states which evolve
in the same way. Among the previous partitions, the optimal solution of problem (8)-(9) will be chosen.
The partition composed by two classes, the �rst including 2-state a1;2 and the second containing 2-states
a2;2, a3;2, and a4;2 is not a feasible solution of our problem. This partition does not belong to the set �

2

de�ned in Eq. (4), since it does not ful�ll the requirement of time dependency.

3 Solution Methodology

First of all, we need to adapt to our case the de�nition of �-active time lag, which has been introduced in
Cerqueti et al. (2009) and will be useful in the Tabu Search algorithm.

De�nition 3 Given � 2 [0; 1] and w 2 f1; : : : ; kg, a time lag w is said �-active if and only if, for any
az 2 A, the following conditions are ful�lled:

� jP (azjai;k)� P (azjaj;k)j < �, where ai;k can di�er from aj;k in all times but t � w,for any couple
i; j,

� � is the smallest number satisfying the previous inequality.

The smaller the � the more an �-active time lag is relevant. More precisely, for an �-active time lag w
the smaller is � the more the observation of the process in t�w brings a \key information" to determine
its evolution at time t.

Solving computationally hard problems like (8)-(9) within reasonable computing times by means of
exact solution procedures, such as implicit enumeration methods or Dynamic Programming, is possible
only for very small-scale instances. This provides us with the motivation of developing an e�cient heuristic
procedure to �nd a near optimal solution in reasonable computing time. To this purpose, we introduce
a suitable Tabu Search algorithm. We assume that the reader is already familiar with the Tabu Search
framework and we refer to Glover and Laguna (1997) for a detailed description of the metaheuristic.
In this section, we �rst describe the Tabu Search algorithm and then introduce the procedure used to
generate the bootstrapped time series.

3.1 Tabu Search algorithm

The present subsection is organized as follows. Firstly, an intuitive description of the Tabu Search
algorithm is provided. Secondly, the behavior of the algorithm in two iterations is shown by means of an
illustrative example. Finally, the mechanics of each element of the heuristic are detailed.

The Tabu Search algorithm starts its search from a solution provided by the researcher, as it is detailed
in Subsection 3.1.1. Then, the algorithm chooses at each iteration one time lag w and selects the best
unidimensional partition �w (i.e. the partition of A at time lag w). The selection of w is driven by its
�-activeness. Speci�cally, before the Tabu Search algorithm starts, we compute the value of � for each
time lag (see De�nition 3). Subsequently, we build up a discrete probability distribution based on the
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�-activeness of each time lag, so that the more �-active the time lag, the higher the probability to be
selected. Speci�cally, the probability of time lag �w, denoted as P ( �w), is calculated as follows:

P ( �w) =
1� � �wPk

w=1(1� �w)
, (10)

where � �w is the value of � for time lag �w. The rationale of this choice is to give priority to those time
lags that bring a key information to determine the evolution of the process. Once a time lag w has
been selected, the incumbent partition is modi�ed only in its w-th component (i.e. �w), keeping �xed the
others. What we obtain is a set of neighbor solutions (see in the following), since � is computed modifying
only one component, and feasible, since we consider only those solutions that do not violate constraint
(9). Additionally, those partitions that are tabu are neglected, unless they lead to a solution better than
any other already computed (the aspiration criterion), as it is further explained in Subsection 3.1.4. The
iteration completes choosing the partition minimizing the objective function (8).
An illustrative example. Consider the instance reported in Table 1, where the 2-states of a second
order Markov chain with A = f1; 2; 3g are partitioned. For ease of exposition, the three initial states,
or intervals, a1, a2, and a3 partitioning the state space [�; �] of the phenomenon are denoted with 1, 2,
and 3, respectively. Assume to solve problem (8)-(9) for 
 = 0:975 and assume that the initial solution
is partition �1 =

�
�12; �

1
1

�
= (f1; 2; 3g; f1; 2; 3g). Partition �1 is shown in the �rst column of Table 1.

Assume that time lag 2 is selected by the Tabu Search algorithm in the �rst iteration. This means that in
the current iteration the algorithm modi�es partition �12 = f1; 2; 3g while keeping �xed �11 = f1; 2; 3g. So
far no partition is tabu, then all the partitions of states at time lag 2 that belong to the neighborhood are
evaluated. Let us assume that the neighborhood is composed of the following unidimensional partitions:
�i2 = ff1; 2g; f3gg, �ii2 = ff1; 3g; f2gg, and �iii2 = ff1g; f2; 3gg. Among these partitions, the one leading
to the best feasible multidimensional partition is selected. Assume that partition �i2 is selected. This leads
to multidimensional partition �2 =

�
�i2; �

1
1

�
= (ff1; 2g; f3gg; f1; 2; 3g), reported in the second column of

Table 1, which becomes the incumbent solution. Then partition �i2 = ff1; 2g; f3gg is made tabu for
a certain number of the following iterations (see Subsection 4.5). In the second iteration, assume that
the Tabu Search algorithm selects time lag 1. All the partitions of states at time lag 1 belonging to
the neighborhood are evaluated while keeping partition �i2 unchanged. Let us assume that the neighbor
partitions are �i1 = ff1; 2g; f3gg, �ii1 = ff1; 3g; f2gg, and �iii1 = ff1g; f2; 3gg. Assume that partition
�iii1 is selected. Hence, the multidimensional partition selected after two iterations is partition �3 =�
�i2; �

iii
1

�
= (ff1; 2g; f3gg; ff1g; f2; 3gg), reported in the third column of Table 1, which becomes the

incumbent solution for the following iteration.

Table 1: An example of two iterations of the Tabu Search algorithm.

Partition classes A�1;h;2 Partition classes A�2;h;2 Partition classes A�3;h;2
f(1; 1); f(1; 1); f(1; 1);
(1; 2); (1; 2); (2; 1)g
(1; 3); (1; 3); f(1; 2);
(2; 1); (2; 1); (1; 3);
(2; 2); (2; 2); (2; 2);
(2; 3); (2; 3)g (2; 3)g
(3; 1); f(3; 1); f(3; 1)g
(3; 2); (3; 2); f(3; 2);
(3; 3)g (3; 3)g (3; 3)g
The initial solution. Partitioning time lag 2. Partitioning time lag 1.

9



3.1.1 Initial solution

We are interested in computing the whole e�cient frontier approximation, de�ned in our Tabu Search
framework according to De�nition 2. Basically the e�cient frontier approximation is the set of solution
points (m�; d�) such that, setting a value for the multiplicity boundary 
, the heuristic cannot improve
below d� (i.e. the distance in the objective function) satisfying the constraint m� � 
. Such representa-
tion of the solutions is useful to make a more appropriate choice for � (which will be used in the bootstrap
procedure) among the various alternatives which result changing 
 2 [0; 1]. The e�cient frontier approx-
imation is computed through a sequence of n� 1 executions of the Tabu Search algorithm, �xing at each
time a speci�c value of parameter 
 and providing an initial solution. In particular, the interval [0; 1] is
divided into n subintervals of equal length. By construction we know the two partitions corresponding
to the extreme points of the e�cient frontier approximation. The singleton partition (i.e. the partition
where each distinct k-state ah;k forms a one element class) corresponds to the point with m� = 0 and
d� = 0. The all-comprehensive partition (i.e. the partition where all the k-states form a unique class)
has m� = 1, while the value of d� is not known a priori but is bounded by 2.
Moving from the starting point, i.e. the all-comprehensive partition, the following points of the frontier
are obtained performing the heuristic for each value of 
 separating the subintervals. The initial solu-
tion considered at any execution is the solution obtained at the previous execution of the Tabu Search
algorithm.

3.1.2 Neighborhood

Assume an incumbent solution � and consider the unidimensional partition �w, w = 1; : : : ; k. Let us
denote the subset of unidimensional partitions obtained from �w by performing a local change on it as its
neighborhood N (�w). Speci�cally, the Tabu Search algorithm uses two kinds of moves that de�ne N (�w):

1. 1-insertion move: remove state i from its current class and insert it into another not empty class,

2. 1-creation move: if state i is not the only element in the class, remove it and create a new class
containing i as the only element.

An illustrative example. Consider the unidimensional partition � = ff1; 2g; f3gg. From this
partition, 3 partitions can be obtained performing 3 di�erent 1-insertion moves. Speci�cally, one can
remove state 1 from the �rst class and insert it into the second class leading to partition �i. Partition �ii

is obtained removing state 2 from the �rst class and inserting it into the second one. Finally, removing
state 3 from the second class and inserting it into the �rst one leads to partition �iii. On the other hand,
two 1-creation moves are available consisting in removing state 1 or state 2 from its current class and
creating a new class, leading to the same partition �iv.

Table 2: An example about how to construct the neighborhood.

Initial partition 1-insertion moves 1-creation moves

�i = ff2g; f1; 3gg �iv = ff1g; f2g; f3gg
� = ff1; 2g; f3gg �ii = ff1g; f2; 3gg

�iii = ff1; 2; 3gg

3.1.3 Random selection of time lags

One time lag is selected and evaluated at each iteration by the Tabu Search algorithm. As already
mentioned above, the procedure used for selecting randomly the incumbent time lag consists of the
generation of an integer random number w 2 f1; : : : ; kg according to the discrete probability distribution
de�ned in Eq. (10). In this way the procedure modi�es the incumbent partition considering preferably
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the time lags which have the highest importance (the most �-active time lags have higher probabilities to
be selected).

3.1.4 Tabu list

k tabu lists TLw, w = 1; : : : ; k, are used, i.e. one tabu list for each time lag w. Basically, when an
unidimensional partition �w is selected, then �w is inserted in TLw meaning that it is tabu (forbidden) to
select again partition �w for a certain number of the following iterations (see Subsection 4.5 for further
details).

Aspiration criterion

A unidimensional partition �w included in the tabu list can be chosen again (i.e. its tabu status is revoked)
if its selection leads to a feasible solution which is better than the best-known solution �H found so far.

3.1.5 Stopping criterion

The search is stopped after a �xed number of iterations (parameter MaxIterations) has been executed.

3.1.6 Tabu Search algorithm

A step-by-step description of our Tabu Search is provided in Algorithm 1.

Algorithm 1 Procedure: TabuSearch.

Input: a feasible partition � of Ak.
Output: the best-known feasible partition �H of Ak.

1: Set �H  � and TLw  ?, w = 1; :::; k.
2: while iterations � MaxIterations do
3: Select randomly time lag �w 2 f1; :::; kg.
4: Consider unidimensional partitions � �w 2 N (� �w) evaluating all the 1-insertion and all the 1-creation moves.

Let � := (�k; :::; � �w+1; � �w; � �w�1; :::; �1), where partitions �w, w 6= �w, remain unchanged. Choose �0�w such
that �0�w 62 TL �w or d�0 < d�H , where �

0 is feasible and d�0 is minimized.
5: Set � �0.
6: Update TL �w.
7: if d� < d�H then
8: Set �H  �.
9: Set iterNoImprov 0.
10: else
11: Set iterNoImprov iterNoImprov+1.
12: if iterNoImprov> MaxIterNoImprov then
13: Call Algorithm 2.
14: Set iterNoImprov 0.
15: end if
16: end if
17: end while

Some initialization tasks are �rst performed in Step 1. Particularly, the input feasible partition � of
Ak is the initial solution provided by the user. Then, the Tabu Search begins in Step 2 and performs the
subsequent instructions MaxIterations times. Firstly, in Step 3 a time lag �w is randomly selected. The
corresponding unidimensional partition � �w is then considered in Step 4 to construct the neighborhood
N (� �w). Set N (� �w) consists of all the unidimensional partitions at time lag �w that can be obtained
performing 1-insertion or 1-creation moves. Any other unidimensional partition �w, with w 6= �w, remains
unchanged. Among the unidimensional partitions in N (� �w) only those that provide a feasible solution
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� := (�k; :::; � �w+1; � �w; � �w�1; :::; �1) are considered. Then, the unidimensional partition �0�w leading to
the best feasible partition �0 :=

�
�k; :::; � �w+1; �

0
�w; � �w�1; :::; �1

�
is selected provided that �0�w is not tabu

or that the aspiration criterion is satis�ed. Partition �0 becomes the new incumbent solution � (Step
5). Partition �0�w is made tabu in Step 6. Finally, other update operations are performed from Step
7 to Step 11, whereas in case MaxIterNoImprov iterations have been consecutively performed without
improvements, the following diversi�cation strategy is performed (Steps 12 to 15).

3.1.7 Diversi�cation strategy

In order to escape from local optima, we have designed jumps that move the search to a di�erent portion
of the feasible region once the neighborhood of a solution has been intensively explored. The procedure
we have designed for performing jumps is reported in Algorithm 2. It is performed every time that a
maximum number of iterations without improvement (parameter MaxIterNoImprov) have been consecu-
tively performed.
A jump consists of a sequence of 1-insertion and 1-creation moves. Speci�cally, choosing a time lag �w 2
f1; :::; kg and given the incumbent partition � := (�k; :::; � �w+1; � �w; � �w�1; :::; �1), the algorithm looks for
the unidimensional partition �0�w leading to the best feasible partition �

0 :=
�
�k; :::; � �w+1; �

0
�w; � �w�1; :::; �1

�
.

Partition �0�w is obtained performing 1-insertion and 1-creation moves from � �w. This operation is repeated
for each time lag w 2 f1; :::; kg. Once the best move has been found for each time lag, an ordered list
L of k moves is created by sorting the corresponding objective function values from the smallest to the
largest. Subsequently, a random positive integer number � is generated. The new solution �0 is obtained
performing iteratively the �rst � moves in list L, provided that that speci�c move does not lead to an
infeasible solution. The random number � is generated in the interval [�; !], where � > 0 must be su�-
ciently large to ensure jumping to a solution reasonably di�erent from the incumbent one, and ! � � is
a parameter less than or equal to k.

Algorithm 2 Procedure: Jumping.

Input: the incumbent partition � of Ak.
Output: a new feasible partition �0 of Ak.

1: Set TLw  ?, w = 1; :::; k.
2: For each time lag �w 2 f1; :::; kg �nd the unidimensional partition �0�w 2 N (� �w) that leads to the best feasible par-
tition �0 keeping unchanged the unidimensional partitions �w, w 6= �w, of �. Set N (� �w) contains unidimensional
partitions obtained by evaluating all the 1-insertion and all the 1-creation moves from � �w.

3: Sort the selected moves in non decreasing order of the corresponding objective function values and create list
L.

4: Determine partition �0 performing sequentially the �rst � moves in list L.
5: if d�0 < d�H then
6: Set �H  �0.
7: end if

Notice that in the jumping procedure the tabu lists are reinitialized to empty sets (Step 1) before
evaluating the possible moves, i.e. no move is then forbidden.

3.2 Bootstrap procedure

The bootstrap procedure is described in Algorithm 3. The algorithm takes as input the heuristic partition
�H and the corresponding k-th order transition probability matrixMH , as well as the observed time series
O = (x1; :::; xM ), and returns a bootstrapped series of length lgh. MatrixMH is estimated by means of
Eq. (7). The core of the algorithm consists of a random choice among the k-states belonging to a class of
partition �H . Indeed, the aim of partitioning the k-states of Ak into �H is to get to a coarser structure of
the information, su�cient to guarantee that the bootstrapped series maintain a good statistical similarity
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with the original series and keep a satisfactory level of multiplicity.
Let us recall that we can describe a k-state starting at time l by means of its values (xl;k =
(xl; :::; xl+k�1) 2 Ok) or by means of its initial states (i.e. the intervals of A which the values belong
to, ~al;k = (al; :::; al+k�1) 2 Ak). We stress that there is a one-to-one correspondence between the values
in xl;k and the intervals in ~al;k.
To avoid the rare but not impossible trapping of the bootstrap procedure, the last k-state of Ak is ex-
cluded in the case it has never been observed before.
To the sake of readability, we will denote as ~al;k 2 A�;h;k when the sequence of k initial states in ~al;k
belongs to partition class A�;h;k, i.e. we neglect the starting time l.

Algorithm 3 Procedure: Bootstrap.

Input: a partition �H of Ak and the corresponding k-th order transition probability matrix MH ; the observed
time series O = (x1; :::; xM ), with M � 2k + 1; a cardinality lgh � k + 1.

Output: a bootstrapped series, i.e. a time-ordered set ~O = (~x1; :::; ~xlgh).

1: Set ~x1;k = (~x1; :::; ~xk) xk+1;k = (xk+1; :::; x2k).
2: for j=1 to lgh� k do
3: Set ~xj;k  (~xj ; :::; ~xj+k�1) and let ~aj;k = (aj ; :::; aj+k�1) be the corresponding k-state.
4: if ~aj;k 2 Ak then
5: Let A�;h;k be the partition class of ~aj;k.
6: Choose uniformly among the k-states ~al;k 2 A�;h;k that have passed the absolute continuity �lter. Let

~al�(j);k = (al�(j); :::; al�(j)+k�1) be the chosen k-state and xl�(j)+k the value corresponding to al�(j)+k.
7: Set ~xj+k  xl�(j)+k.
8: else
9: Set r  1.
10: Set ~xj;k�r  (~xj+r; :::; ~xj+k�1) and let ~aj;k�r = (aj+r; :::; aj+k�1) be the corresponding k-state.
11: if ~aj;k�r 2 Ak�r then
12: Find all the (k�r)-states ~al;k�r whose sequence of a's is the same of ~aj;k�r and choose uniformly among

them. Let ~al�(j+r);k�r = (al�(j+r); :::; al�(j+r)+k�r�1) be the chosen (k � r)-state and xl�(j+r)+k�r the
value corresponding to al�(j+r)+k�r.

13: Set ~xj+k  xl�(j+r)+k�r.
14: else
15: Set r  r + 1 and go to step 10.
16: end if
17: end if
18: end for

Algorithm 3 generates bootstrapped series of lgh observations, which we denote as ~O = (~x1; :::; ~xlgh).
Notice that the �rst k bootstrapped values are initialized to the observed values from time k+1 to time 2k,
xk+1; :::; x2k (Step 1). Although the estimation of transition probability matrixMH has been performed
on all the values of the original series, we exclude from the bootstrap procedure the �rst k observed values
in O, x1; :::; xk. Indeed none of these values can represent the possible evolution of a k-state, because by
construction it is not possible to identify a whole k-state preceding each of the values x1; :::; xk.
The residual lgh� k values are obtained iterating the instructions in Steps 2 to 18.
The standard steps for generating the values of the bootstrapped series are 5 to 7. Such instructions are
performed when the last generated k intervals, i.e. ~aj;k, correspond to a k-state in Ak (Step 4). Firstly,
the algorithm looks for the partition class of ~aj;k. Let that class be A�;h;k (Step 5). Secondly, a random

selection that is respectful of the transition probabilities P̂ (azjA�;h;k)'s contained in matrixMH is done.
The selection is performed in Step 6 among those k-states in A�;h;k that ful�ll the absolute continuity
�lter (see in the following for a detailed description). Thirdly, the value that follows the selected k-state
is then added to the bootstrapped series (Step 7).
Steps 9 to 16 are designed to manage the possibility of generating k-states ~aj;k which have not been
observed. In fact, in such cases, relying only on MH , we would not be able to extract the next value
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for the resampled series. To get over such hurdles we design a progressive \reduction of memory". This
corresponds to iteratively reducing the order of the Markov chain. The recent history of the generated
series is observed reducing progressively the order k (Steps 9 and 10). Set Ak�r contains all the observed
(k � r)-states of intervals ~al;k�r. If the last generated (k � r)-state ~aj;k�r belongs to Ak�r (Step 11), a
random selection is performed among the (k� r)-states of Ak�r that show the same sequence of intervals
of ~aj;k�r (Step 12). The value that follows the selected (k � r)-state is then added to the bootstrapped
series (Step 13) and the algorithm moves to the next iteration.

3.2.1 Absolute continuity �lter

As soon as a k-state is generated, its partition class A�;h;k is found and all the k-states belonging to
the class are considered for selection. This class is indeed further re�ned to exclude those k-states which
have transition probabilities not absolutely continuous to those of the currently generated k-state (Step
6). In probability theory, a probability � is said absolutely continuous with respect to a probability � if
� (B) = 0 whenever � (B) = 0 for any event B. We adopt this de�nition in our context. More precisely,
we impose that, given two k-states ~aj;k;~al;k 2 A�;h;k, where ~aj;k is the one currently generated by the
procedure, ~al;k is considered for selection if the following condition is satis�ed:

P̂ (azj~aj;k) = 0) P̂ (azj~al;k) = 0, z = 1; :::; N .

This choice should reduce the chances (but not eliminate them) of generating bootstrapped series that
evolve following paths which have never been observed.

4 Experimental Environment

4.1 Data description

The solution methodology, which uses a Tabu Search algorithm for the solution of the optimization
problem and exploits the resulting partition �H of Ak to generate bootstrapped series, is now detailed to
make clear the choices adopted to develop our application.
In this application we want to generate a family of bootstrapped series starting from the series of prices of
two electricity markets. In particular, we consider the series of the daily spot price (in euros) for 1 MWh
of the Spanish (Mibel Spanish Electric System Arithmetic Average Price) and German (EEX Phelix Day
Base Price) markets in the periods 1=2=1998� 12=31=2003 and 6=17=2000� 5=8=2007, respectively. The
time series of Spain consists of M = 2; 190 observations, while the time series of Germany has M = 2; 517
points.
These two series are interesting from a statistical point of view as they have features which make them
\hard" to replicate. Fig. 1 and 2 show them.

A look at the �gures allows us to detect:
- a weekly seasonality,
- a slightly positive trend,
- stochastic volatility,
- non linear dependency of data,
- two clear regimes of prices: normal trading and occasional short lived spike periods.

Spikes appear with no apparent regularity. Such events can be explained by sudden shortages on the
supply side of the electricity system, or by unexpected and temporary increases of the demand (e.g.,
sudden meteorological events, driving to high consumption). Another regime switch occurs daily and is
linked to day-light and night periods, usually referred to as periods of base and peak load. However we
do not consider it here, as we use a daily electricity index, which is calculated as an arithmetic average
of the 24 delivery hours.
All these features represent a serious challenge to a bootstrap procedure, which is based on classical
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Figure 1: Spanish daily electricity prices.

methods like parametric or block sampling. In particular the parametric bootstrap requires to make
a decision about the speci�cation of the model, which is very di�cult given the features of the series
mentioned above. The block bootstrapping requires the strict stationarity of the original series, which is
violated in this case. Data treatment to transform the original series into a stationary process is again
very delicate, since the correction for stochastic volatility mixed with that of the occasional spikes is
a hard task. On the contrary, such di�culties do not represent a serious challenge to a Markov chain
approach to bootstrapping, since, as it is typical of data driven modelling methods, it adapts to any kind
of time dependency among the data. Indeed in our application we only remove an exponential trend from
the original data, and we re-apply it to the bootstrapped series.

4.2 Trend removal

The removal of an exponential trend rather than a linear one avoids the problem of generating (occa-
sionally) negative prices. In particular the estimation of the exponential trend is based on the following
model:

x
(c)
t = Cert+ t , (11)

where x
(c)
t are the raw original prices. If we assume that the time is continuous and that

n
 t
�

o
t�0

is a

standard Brownian motion, we recognize
n
x
(c)
t

o
t�0

as the geometric Brownian motion with dynamics:

dx
(c)
t = (r +

1

2
�2)dt+ �dWt, x

(c)
0 = C, Wt =

 t
�
.

If we take the natural logarithm on both sides of Eq. (11), we obtain the following equation:

zt = u+ rt+  t,
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Figure 2: German daily electricity prices.

where zt = lnx
(c)
t , u = lnC is the intercept, r is the growth rate, and  t are the errors.

For estimation purposes, let us assume that time is discrete and that the usual hypotheses of linear
regression on the errors  t hold. We obtain the following OLS estimates of r signi�cant at a level of 5%:

r̂S = 0:0001162404

r̂G = 0:0003867605,

where S stands for Spain and G stands for Germany.
To the purpose of removing the exponential trend from our original series, we de�ne the series of prices
O = (x1; :::; xM ), where:

xt = ezt�r̂t, t = 1; :::;M .

SetO is an input for the bootstrap procedure, while the output is the bootstrapped series ~O = (~x1; :::; ~xlgh).
To re-introduce the exponential trend in ~O, we multiply each point ~xj by e

r̂j , j = 1; :::; lgh.
Another simple preliminary data treatment that we could perform is the removal of seasonalities. We
have chosen not to handle annual seasonality because of the relatively short time series under analysis,
while weekly seasonality has been modeled setting the order k of the Markov chain equal to 7.

4.3 Preliminary segmentation of the state space

The search for the relevant states of a continuous-valued process results from the aggregation of smaller
segments of the state space of the process. To this purpose we partition the state space [�; �] � R into
N initial states, or intervals, a1; : : : ; aN , where N is set to a larger value than it is actually required. We
collect the N initial states in set A.
In this application we set N = 12, which is a number indeed larger than it is usually expected to model
electricity price regimes. At the same time, it was not possible to increase it further, as the transition
probability matrix would tend to a 0-1 matrix, and the bootstrapped series would become replications of
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the original sample. More precisely, if a k-state is speci�ed through an excessively �ne grid, then it will
be observed only once in the original series. Consequently the estimate of its transition probability will
consist of a 1 for the state to which that k-state has historically evolved and a 0 for all the other states.
Let us call these k-states deterministic k-states.
To identify the 12 initial states, a univariate cluster procedure based on Ward's minimum-variance method
(e.g., see Ward Jr. 1963) has been applied to each time series (after removal of trend). Adopting a Ward
clustering favors the formation of clusters around the modal values of a distribution. Fig. 3 and 4 show
the two detrended series together with the 12 intervals (separated by horizontal lines). Appendix B details
this preliminary segmentation. For ease of exposition, we represent the set of states as A = f1; ::; 12g.
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Figure 3: Spanish daily electricity prices without exponential trend and with grid of initial states, or intervals.

Based on such preliminary segmentation, the Tabu Search algorithm possibly joins several initial states
into larger ones, to the aim of identifying the signi�cant regimes of the phenomenon.

4.4 Partitions composition

Optimization problem (8)-(9) aims at obtaining both the optimal order k� of a Markov chain
fX�(t); t � 0g describing the evolutive phenomenon and the optimal partition �� providing the clustering
of Ak

�
. It is worth noting that both k� and �� depend on the value of 
. As already mentioned at the end

of Subsection 4.2, in our application we restrict the optimization problem by �xing k = 7. Nevertheless,
the optimal k might be found by iterating the exact solution procedure as k varies from 1 to a su�ciently
large value �k and selecting the value of k, namely k�, corresponding to the best solution.
The 7th order transition probability matrices MS and MG estimated for
the Spanish (S) and German (G) markets are available at the web page
\http://chiara.eco.unibs.it/~guastaro/Partitioning/InstancesPartitioning.html". The transition proba-
bilities have been computed using Eq. (3). Recall that the total number of rows of a transition probability
matrix of a 7th order Markov chain with 12 states amounts to #

�
A7
�
= [# (A)]7 = 127 = 35; 831; 808.

The transition probability matrices MS and MG have 1; 964 and 2; 206 rows, respectively, as they
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Figure 4: German daily electricity prices without exponential trend and with grid of initial states, or intervals.

include only the rows corresponding to observed 7-states. The missing rows are not reported, because
they refer to non observed 7-states whose transition probabilities are null. Notice that in both cases the
rows represent a small subset of A7.
Another empirical feature of our evolutive phenomena is the presence of observed 7-states with de-
terministic evolution. The set of observed 7-states, A7, is composed of 2; 183 7-states for the Spanish
instance and 2; 510 7-states for the German market2. The percentage of deterministic 7-states over
all the observed 7-states is 89% in the case of Spain and 86% in the case of Germany. The remaining
observed 7-states will be called probabilistic, because, contrarily to the deterministic 7-states, they have
empirically evolved towards more than one of the 12 possible states. In the end, the estimated 7th order
transition probability matrix MS consists of 90 probabilistic rows and 1; 874 deterministic rows, while
forMG the numbers are 136 and 2; 070, respectively.
Let us notice that the generation of bootstrapped series should preserve the deterministic transitions of
the original series: when a series has shown a nearly unique evolution (e.g., a spike), a bootstrapping
procedure should keep the deterministic nature of such trajectory. On the other hand, the probabilistic
k-states, denoting a recurrent feature of the phenomenon, represent the points where a bootstrapping
methodology should select among the observed evolutions.
Our bootstrapping procedure is designed to take into account the two previous requirements. Speci�cally,
the procedure allows deterministic k-states to be reproduced. On the other hand, by introducing the
parameter 
 2 [0; 1] in optimization problem (8)-(9), we control the number of classes aggregating the
probabilistic k-states, therefore tuning the trade-o� between statistical similarity and multiplicity of the
bootstrapped series.
Given the fact that not all the potential k-states have been observed and that many observed k-states
are deterministic, we have adopted the following settings for our optimization problem:

1. all the non observed k-states, whose transition probabilities are null, are considered as the members

2These two numbers exclude the last observed 7-states, because they have not evolved to a state.
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of a unique class,

2. each observed deterministic k-state is the unique member of a one element class.

Given the fact that the number and the composition of the partition classes of points 1. and 2. are the
same for all the feasible solutions, we have solved our optimization problem by calculating the distance
indicator and the multiplicity measure only on the partition classes aggregating the probabilistic 7-states.
As a result of the previous settings, all the feasible partitions � are characterized by three kinds of classes:

a) the unique class collecting the non observed 7-states,

b) as many classes as the number of observed deterministic 7-states,

c) the classes aggregating the observed probabilistic 7-states.

4.5 Tabu Search settings

Because of the rapidly increasing number of partitions that have to be considered when solving optimiza-
tion problem (8)-(9), the exact solution procedure proposed in Cerqueti et al. (2009) can handle only
small size instances. Thus, the �rst goal of the computational experiments is to validate our heuristic
comparing the performance of the Tabu Search algorithm with that of the exact solution procedure in-
troduced in Cerqueti et al. (2009) for small size instances. The second goal is to assess the performance
of the heuristic when solving large scale instances.
The Tabu Search algorithm has been coded in Java. The computational experiments have been performed
on a PC with an Intel Xeon 2:27 GHz processor and 12:00 GB of RAM. To the �rst goal we have generated
10 instances, as described in Subsection 5.1, whereas to the second goal we have considered the two 7th

order transition probability matricesMS andMG.
After extensive preliminary experiments, the parameters of the Tabu Search algorithm have been set to
the following values. The Tabu Search algorithm stops after 2000 iterations (parameter MaxIterations).
The jumping procedure is called after 500 consecutive iterations without any improvement (parameter
MaxIterNoImprov). Additionally, once a unidimensional partition �w is inserted in a tabu list, it remains
in the list round(4� k � U [0; 1]) iterations, where U [0; 1] is a uniformly distributed random number be-
tween 0 and 1, and round(�) indicates the nearest integer of \�". Furthermore, we set the interval [�; !]
for the random choice of the number of jumps equal to [2; 5]. Finally, the interval [0; 1] is divided into 40
subintervals (parameter n), each of length equal to 0:025. As a consequence, 39 consecutive executions of
the Tabu Search algorithm are performed, one for each value of 
 separating the subintervals.
Recall that, moving from the starting point (the all-comprehensive partition), the following points of the
frontier are obtained performing the heuristic for each value of 
 separating the subintervals. The initial
solution considered at any execution is the solution obtained at the previous execution of the Tabu Search
algorithm.

5 Results and Discussion

5.1 Computational results: the Tabu Search algorithm

To evaluate the e�ectiveness of the Tabu Search algorithm, we have generated two groups of instances,
each including 5 test problems:

Group 1: the instances refer to 5 Markov chains of order 5 with 3 states. Each corresponding transition
probability matrix includes 243 rows. The instances are laboratory tests of (relatively) small size. The
number of partitions that can be formed for each instance is 3; 125;
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Group 2: this group is similar to group 1, with the only di�erence that they refer to 5 Markov chains
of order 3 with 5 states. Each corresponding matrix includes 125 rows. The number of partitions that
can be formed for each instance is 140; 608.

All the previous instances have been generated similarly to the cases analyzed in Cerqueti et al. (2009).

Table 3: Comparison between the optimal e�cient frontiers and the e�cient frontier approximations calculated for
10 instances.

Instance details Exact Tabu Search algorithm (average values)e

solution
procedure

No. (average No.
No. No. of No. values) of found/
of of time of CPU No. CPU

Group instancesa statesb lagsc partitionsd (secs.)i of pointsf Gap (%)g Gap95 (%)
h (secs.)i

1 5 3 5 3,125 24.968 0.701 3.98% 0.00% 21.235
2 5 5 3 140,608 570.864 0.655 6.66% 0.75% 28.438

aColumn \No. of instances" shows the number of instances composing each group.
b;cThe numbers of states and time lags are reported in the following two columns.
dColumn \No. of partitions" refers to the number of partitions that can formed for each instance of the group.
eThe last 4 columns concern the average performance of the Tabu Search algorithm.
fColumn \No. of found/No. of points" reports the average number of solutions found by the Tabu Search algorithm
divided by the number of points composing the e�cient frontiers.
gColumn \Gap (%)" shows the average percentage error computed considering only the number of points

found by the Tabu Search algorithm. For each point considered, the statistic is computed as 100� d
�H

�d��
d��

,

where d�H is the distance of the best-known solution found by the Tabu Search algorithm, and d�� is the distance of the solution
found by the exact solution procedure and having the same multiplicity of the heuristic solution (m�� = m�H ).
hColumn \Gap95 (%)" shows the average percentage error computed by considering only the points within the 95th percentile.
iThe average computing time spent by the exact solution procedure and Tabu Search algorithm computing the frontiers
are reported in CPU (secs.). Computing times for the Tabu Search algorithm include the (negligible) time spent
computing the value of � for each time lag (see Subsection 3.1).

Table 3 summarizes the details and the computational results of the instances in groups 1 and 2. The
�rst 4 columns show the key features of each group: the number of instances composing the group, the
order and the states of the Markov chains, and the number of partitions. The following columns report
the performances of the exact solution procedure (column 5) and of the Tabu Search algorithm (columns
6 to 9).

We can separate the comments on e�ciency (CPU times) from those concerning e�ectiveness (quality
of the solutions).

Starting with the CPU times, we notice that the computing time spent by the Tabu Search algorithm
is neatly smaller than that needed by the exact solution procedure, especially for group 2 including
\bigger" instances than those in group 1. The computing times show that the resources needed by the
exact solution procedure increase sharply with the dimension of the instances and justify the use of our
heuristic approach to solve large scale instances.

Concerning the quality of the solutions, the number of solutions found by the Tabu Search algorithm
which correspond to those found by the exact solution procedure have ranged from 65:5% (group 2) to
70:1% (group 1). Statistic \Gap (%)" is equal to 3:98% and to 6:66% for groups 1 and 2, respectively.
Nevertheless, it must be noticed that the statistic values have been largely driven by the errors made
in few cases. For example, the largest error (260%) among the 5 instances in group 1 is due to an
apparently small di�erence between the partitions found by the exact solution procedure and the Tabu
Search algorithm, as shown in Table 4.
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Table 4: Di�erence between partition �� found by the exact solution procedure and the corresponding partition,

�H, found by the Tabu Search algorithm and generating the largest error (260%) among the 5 instances in group
1.

Time Exact solution procedure Tabu Search algorithm
lag k partition �� = (��5; :::; �

�
1) partition �H = (�H5 ; :::; �

H
1 )

4 ��4 = ff1; 2; 3gg �H4 = ff1; 2g ; f3gg
3 ��3 = ff1g ; f2; 3gg �H3 = ff1; 2; 3gg
For time lags 5, 2, and 1, the partitions are identical.

This behavior suggests that even small changes in the composition of the solution can cause a dramatic
deterioration of the objective function. Removing the outliers (i.e. the errors between the 95th and the
99th percentiles) from the computation, it can be noticed that the Tabu Search algorithm found the
optimal or a near-optimal solution (see statistic \Gap95 (%)").

For the sake of brevity, we report the comparison between the optimal e�cient frontier (Optimal)
and the e�cient frontier approximation (Heuristic) of one instance for each group (see Fig. 5 and 6). It
is worth noting that the e�cient frontier approximations replicate their optimal counterparts, with the
exception of few cases where the algorithm has not been able to �nd the optimal solution.
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Figure 5: Comparison between the optimal e�cient frontier and the e�cient frontier approximation based on
instance 1 of group 1. The frontiers are overlapping except 4 points (only circle), where the heuristic has not found
the optimal solution.

The e�cient frontier approximations computed by the Tabu Search algorithm for the matrices MS

and MG are shown in Fig. 7. To the sake of completeness, we report in Appendix C the coordinates
of the points computed by the Tabu Search algorithm. By construction we know the two partitions
corresponding to the extreme points of the e�cient frontier approximation, i.e. the singleton partition
and the all-comprehensive partition (see Subsection 3.1.1). Therefore the e�cient frontier approximations
reported in Fig. 7 represent the 39 solutions found by the Tabu Search algorithm plus the two extreme
partitions.
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Figure 6: Comparison between the optimal e�cient frontier and the e�cient frontier approximation based on
instance 4 of group 2. The frontiers are overlapping except 8 points (only circle), where the heuristic has not found
the optimal solution.

Finally, the Tabu Search algorithm computed the e�cient frontier approximation for the Spanish in-
stance in 211:550 secs. (on average it took 5:424 secs. to compute each solution), whereas it required
619:669 secs. to compute the e�cient frontier approximation for the German instance (on average 15:889
secs. to compute each solution).
In Fig. 7, three points catch the eye. These points represent the 4 partitions we have chosen to perform
our bootstrap procedure: two partitions, characterized by the minimum of multiplicity and the maximum
of similarity, to be compared with two other partitions, showing a su�ciently high level of multiplicity
and an acceptable level of similarity.
The points at the origin of the axes represent the singleton partitions of Spain and Germany; we
denote these partitions as �S and �G, respectively. The other two points represent the heuris-
tic solutions of optimization problem (8)-(9) with 
 = 0:4 and 
 = 0:275, respectively for Spain
and Germany. We call these two partitions �HS and �HG . The 7th order transition probabil-
ity matrices associated to �HS and �HG are MH

S and MH
G . The matrices report the probabil-

ities of each partition class as estimated through Eq. (7) and are available at the web page
\http://chiara.eco.unibs.it/~guastaro/Partitioning/InstancesPartitioning.html". Partition �HS consists of
45 classes aggregating the observed 90 probabilistic 7-states, 1; 874 classes of observed deterministic 7-
states, and one further class containing all the non observed 7-states. Partition �HG has 57 classes aggre-
gating the 136 observed probabilistic 7-states, 2; 070 deterministic classes, and a class collecting the non
observed 7-states.
Tables 5 and 6 detail partitions �HS and �HG in terms of unidimensional partitions �HS;w and �

H
G;w, with

w = 1; : : : ; 7 (see also Eq. (4)).
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Table 5: The 7 unidimensional partitions composing the heuristic multidimensional partition �HS .

Time �HS = (�
H
S;7; :::; �

H
S;1)

lag k
7 �HS;7 = ff1; 8; 9g; f2g; f3; 4; 5; 6; 7g; f10g; f11g; f12gg
6 �HS;6 = ff1; 3; 4; 5; 6; 7; 9g; f2; 8g; f10g; f11g; f12gg
5 �HS;5 = ff1; 2; 4; 9g; f3; 8g; f5; 6; 7g; f10g; f11g; f12gg
4 �HS;4 = ff1; 4; 5; 6; 9g; f2; 3; 7g; f8g; f10g; f11g; f12gg
3 �HS;3 = ff1; 2g; f3g; f4g; f5; 6; 7; 8; 9g; f10g; f11g; f12gg
2 �HS;2 = ff1; 2; 8; 9g; f3; 4g; f5; 6; 7g; f10g; f11g; f12gg
1 �HS;1 = ff1; 4; 5; 6; 7; 9g; f2; 3; 8g; f10g; f11g; f12gg
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Table 6: The 7 unidimensional partitions composing the heuristic multidimensional partition �HG .

Time �HG = (�
H
G;7; :::; �

H
G;1)

lag k
7 �HG;7 = ff1; 2; 3; 4; 5; 8g; f6; 7g; f9g; f10g; f11g; f12gg
6 �HG;6 = ff1; 6g; f2g; f3; 4; 5; 7; 8g; f9g; f10g; f11g; f12gg
5 �HG;5 = ff1; 6g; f2; 7; 8g; f3; 4; 5g; f9g; f10g; f11g; f12gg
4 �HG;4 = ff1; 6; 7g; f2g; f3; 4; 8g; f5g; f9g; f10g; f11g; f12gg
3 �HG;3 = ff1; 6; 8g; f2; 3; 4; 5g; f7g; f9g; f10g; f11g; f12gg
2 �HG;2 = ff1; 5g; f2; 3; 4g; f6g; f7; 8g; f9g; f10g; f11g; f12gg
1 �HG;1 = ff1; 2; 3; 4g; f5; 7g; f6; 8g; f9g; f10g; f11g; f12gg

We can make the following comments on the two tables:

- the \highest" states, namely states 10 to 12 for the Spanish instance and states 9 to 12 for Germany, are
intervals of high prices and have been kept separated for all the time lags. This result depends on
the fact that all the 7-states composed by at least one of these states are deterministic, preventing
that such states could be aggregated at some time lags,

- the other states, namely states 1 to 9 for the Spanish market and states 1 to 8 for Germany, have
been somehow aggregated at each time lag. Such aggregations indicate that at some time lags the
preliminary segmentation of the state space has turned out to be fulsome to describe the phenomenon
evolution,

- what is surprising about the clustering of states is the non hierarchical feature of the unidimensional
partitions: indeed the aggregation of some states at a time lag does not maintain, or even become
�ner, at closer time lags. For example, time lag 1 of Spain is characterized by a coarser partition
of states than the other time lags (except for time lag 6). Similar observations can be made for the
German instance. This result contrasts with the hierarchical aggregation of states implied by the
Variable Length Markov Chain bootstrap advanced in B�uhlmann and Wyner (1999),

- �nally, the \key information" about the phenomenon evolution seems to be brought by time lag 3 for
Spain and time lags 2 and 4 in the German case: indeed, the unidimensional partitions of these time
lags include the highest number of classes, meaning that keeping states separated at these time lags
matters to describe the phenomenon evolution.

5.2 Computational results: the bootstrapped series

For each market (Spain and Germany), we have evaluated the performance of our bootstrap procedure
in two di�erent scenarios:

i. a \conservative" scenario, where we consider the two partitions �S and �G, which are characterized
by the minimum multiplicity and the maximum similarity among the bootstrapped series,

ii. a \progressive" scenario, where we consider the two (half-way) partitions �HS and �HG , which are
expected to generate higher diversi�cation and lower similarity among the bootstrapped series than
�S and �G.

We therefore have generated 4 sets of 5; 000 bootstrapped series, one set for each partition, with length
lgh = 2; 183 for the Spanish cases and lgh = 2; 510 for the German ones. The lengths of the bootstrapped
series are equal to the lengths of the corresponding original series (net of the values required to initialize
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the procedure) to allow for a fairer comparison3. Indeed, in the following we analyze the statistical
properties of the bootstrapped series in order to compare them with the ones of the original series.
Before introducing the statistics, we want to give a taste of how bootstrapped series look like. Fig. 8
and 9 report two bootstrapped series, one for the Spanish market and one for the German instance. The
two series are based on partitions �HS and �HG . The bootstrapped series include the exponential trend
initially removed from the original samples (see Subsection 4.2). Each value of the series is classi�ed as
deterministic (thin mark) or probabilistic (thick mark).

0

10

20

30

40

50

60

70

80

90

100

110

1

25
1

50
1

75
1

10
01

12
51

15
01

17
51

20
01

Bootstrapped observations

Pr
ic

e 
(€

/M
W

h)

Figure 8: Bootstrapped Spanish electricity prices. The thick mark indicates that the selected value is the ending
point of an observed probabilistic 7-state, the thin mark indicates that the bootstrapped values are the last points
of observed deterministic 7-states.

We can make the following remarks:

- both the bootstrapped series in Fig. 8 and 9 reproduce the spikes observed in the original series (see
Fig. 1 and 2),

- also the normal trading regime appears satisfactorily reproduced. Indeed the two series take values in
a range strongly overlapping with that of their original counterparts,

- weekly seasonalities are clearly distinguishable, as well as a slightly positive trend,

- the frequencies of probabilistic values are 11% and 17%, respectively for the Spanish and German
cases, similar to the values in the original series (i.e. 11% for Spain and 14% for Germany). The
majority of times the bootstrap procedure reproduces deterministically sequences of the original
series. Such segments are interleaved occasionally by probabilistic values, as we wanted to obtain.
The higher percentage of probabilistic values in the German case may be due to the larger number
of probabilistic classes of �HG with respect to �HS (57 against 45).

3See Subsection 3.2 for the initialization steps of the bootstrap procedure.
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Figure 9: Bootstrapped German electricity prices. The thick mark indicates that the selected value is the ending
point of an observed probabilistic 7-state, the thin mark indicates that the bootstrapped values are the last points
of observed deterministic 7-states.

To evaluate more rigorously the statistical properties of the bootstrapped series with respect to their
original counterparts, we have calculated the following statistics on each bootstrapped series:

1. average,

2. standard deviation,

3. skewness,

4. kurtosis,

5. minimum,

6. maximum,

7. autocorrelation at lag k, k = 1; :::; 8,

8. linear regression slope, b, with ~xt = a+ bt+ et, t = 1; :::; lgh.

The statistics from 1: to 6: are concerned with the distribution of prices, while the statistics in 7: and
8: are more concerned with the dynamic structure of the series. The autocorrelation at lag 8 is observed
to check if the similarity between the original and the bootstrapped series is kept beyond the order k = 7
used to de�ne the driving process.
Tables 7 and 8 report (for Spain and Germany, respectively) the 5th and 95th percentiles of the distributions
of the mentioned statistics, together with the actual value observed in the original series. To evaluate
these distributions, we also report the percentile rank, i.e. the percentage of cases for which the statistic
value is smaller than or equal to the original observed one.
We can make the following remarks:
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- for all the four partitions �S , �
H
S , �G, and �

H
G , all the statistics computed for the original series take

values in the middle percentiles. This is true also for the autocorrelation at lag 8,

- the percentile ranks are more 
uctuating in the German scenarios than in the Spanish cases: the lowest
percentage of Germany is 41 (see row \autocorrelation at lag 7" of partition �HG in Table 8), against
57 for Spain (see row \average" of partition �HS and row \kurtosis" of partition �S in Table 7).
The highest percentages in the Spain and Germany cases are, respectively, 74 and 77, and display
a more negligible di�erence,

- nearly all the 5-95 intervals of Germany related to partition �HG (the half-way scenario) show wider limits
than the corresponding intervals calculated on the distributions of �G (the conservative scenario).
Such result denotes that in the German case passing from the conservative scenario to a progressive
one allows for an increase of the multiplicity among the bootstrapped series. The case of Spain,
on the contrary, is much more stable: there seems to be no remarkable di�erence between the 5-95
intervals generated with the two partitions �S and �

H
S . This implies that the bootstrapped series

obtained with the two partitions are rather stable. Again, the explanation of this result may be
attributed to the higher number of probabilistic 7-states observed in the German case,

- although we do not give evidence of the complete distribution of the maximum, we report that not all
the 5; 000 series generated in each setting have shown a spike. This feature re
ects the desirable
property that a rare event does not have to appear regularly.

Table 7: Percentiles of some statistics distributions computed out of the 5; 000 bootstrapped series of Spain for two

scenarios: the conservative scenario (partition �S) and the progressive scenario (partition �
H
S ).

Statistics Spain - �S Spain - �HS
5th 95th Value Percentile rank 5th 95th Value Percentile rank

percen- percen- of original of original percen- percen- of original of original

tile tile series series value tile tile series series value

average 26:522 31:889 29:692 62 26:574 32:074 29:692 57

standard dev. 6:844 10:906 9:57 69 7:113 10:979 9:57 68

skewness 0:091 2:108 1:381 60 0:114 2:033 1:381 66

kurtosis �0:518 10:205 5:081 57 �0:571 9:327 5:081 63

minimum 4:563 11:579 5:469 59 4:546 11:754 5:469 58

maximum 50:237 111:33 103:758 70 50:971 111:382 103:758 71

aut. at lag 1 0:737 0:861 0:818 60 0:737 0:859 0:818 62

aut. at lag 2 0:579 0:773 0:706 59 0:579 0:772 0:706 61

aut. at lag 3 0:545 0:746 0:706 62 0:547 0:745 0:706 63

aut. at lag 4 0:526 0:732 0:667 62 0:529 0:733 0:667 63

aut. at lag 5 0:513 0:729 0:661 62 0:52 0:73 0:661 62

aut. at lag 6 0:604 0:762 0:721 68 0:614 0:764 0:721 65

aut. at lag 7 0:704 0:825 0:802 74 0:728 0:829 0:802 68

aut. at lag 8 0:565 0:724 0:683 69 0:581 0:727 0:683 64

lin. regr. slope �0:001 0:007 0:004 64 �0:001 0:007 0:004 63
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Table 8: Percentiles of some statistics distributions computed out of the 5; 000 bootstrapped series of Germany for

two scenarios: the conservative scenario (partition �G) and the progressive scenario (partition �
H
G ).

Statistics Germany - �G Germany - �HG
5th 95th Value Percentile rank 5th 95th Value Percentile rank

percen- percen- of original of original percen- percen- of original of original

tile tile series series value tile tile series series value

average 29:237 34:775 32:261 65 29:224 34:63 32:261 67

standard dev. 13:051 22:806 18:4 73 12:684 22:949 18:4 77

skewness 1:294 7:966 3:974 67 1:09 8:324 3:974 70

kurtosis 3:879 119:625 35:573 60 2:696 129:849 35:573 64

minimum 2:122 4:941 3:117 69 2:122 5:261 3:117 65

maximum 137:416 457:285 301:542 75 124:443 457:462 301:542 76

aut. at lag 1 0:597 0:798 0:716 63 0:607 0:808 0:716 55

aut. at lag 2 0:387 0:661 0:572 66 0:386 0:67 0:572 61

aut. at lag 3 0:359 0:597 0:506 69 0:364 0:609 0:506 63

aut. at lag 4 0:32 0:584 0:476 65 0:329 0:598 0:476 59

aut. at lag 5 0:326 0:611 0:486 60 0:336 0:626 0:486 53

aut. at lag 6 0:381 0:712 0:585 55 0:376 0:724 0:585 48

aut. at lag 7 0:422 0:793 0:644 49 0:417 0:807 0:644 41

aut. at lag 8 0:319 0:687 0:544 52 0:313 0:7 0:544 45

lin. regr. slope 0:009 0:017 0:013 58 0:009 0:017 0:013 59

Given these results, it can be said that the original series (both the Spanish and the German one)
can be considered as a trajectory sampled from the same process which has generated the bootstrapped
series.

6 Conclusions

In this paper, we develop a method to apply a Markov chain bootstrapping for discrete time continuous-
valued processes. The search of the \optimal" transition probability matrix has been solved through
an application of a Tabu Search algorithm. This heuristic has shown satisfactory performances where
the optimal solution of a test problem was known. At the same time it has allowed to solve a real life
case, i.e. the bootstrapping of the price series of the German and Spanish electricity markets, �nding
the (sub-optimal) e�cient set of the solutions in a time ranging from 0:5 to 1:5 hours running on a PC
with an Intel Pentium 4 3:00 GHz processor and 2:00 GB of RAM. The heuristic solution of the small
problems considered in Cerqueti et al. (2009) took at most 4:5 minutes of computing time, providing a
slightly sub-optimal solution.
An even more relevant observation is concerned with the quality of the bootstrapped series. Standard
statistics like the average, the standard deviation, the autocorrelation coe�cients, and the trend observed
on the resulting series have distributed nicely around the corresponding value of the original series.
Such consistency cannot be arguably expected for alternative methods of bootstrapping, with particular
reference to parametric methods, and block resampling methods. In the former case, the di�culties
of assuming and estimating the parameters for a satisfactory model for the electricity prices can be
overwhelming. Similarly for the latter case are the di�culties required to transform the original data
into a stationary process. With respect to other Markov chain bootstrap methods, our proposal cannot
be fully compared, since the main focus of this approach is to \�nd out" the relevant discretization of a
continuous state space, while in the standard Markov chain bootstrap methods a �nite number of relevant
states is taken as given.
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Ranging from lower to higher values of the multiplicity boundary has proven to impact on the quality of the
bootstrapped series. The dispersion of the distributions of the statistics observed on the resulting series
tends to increase as such constraint becomes more restricting, as it was expected. At the same time, the
same distributions maintain a remarkable centrality with respect to the corresponding parameter values
of the original series.
It is �nally worth to mention that even more compelling cases can be approached through the method
advanced here. Bootstrapping of multivariate Markov processes has been rarely faced in the literature,
because of the signi�cant additional di�culties of such processes. The components of a multivariate
Markov process can be arbitrarily di�erent and yet show signi�cant dependencies. In such cases the
complications arising for the block or the parametric bootstrapping can become simply unbearable. On
the contrary, these processes can be easily modeled through a multivariate discretization of their state
spaces in a natural extension of the single valued case developed here, and the design of the optimal
transition probability matrix reduced to a problem of acceptable computational e�ort.
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Appendix A

Table 9 summarizes some notation introduced in the paper.

Table 9: Some notation with a brief explanation.

Notation Brief explanation

[�; �] � R Real interval representing the state space of the continuous-valued
process modelling the evolutive phenomenon

#(Y ) Cardinality of set Y

O = (x1; : : : ; xM ) Original sample of the evolutive phenomenon

A = fa1; : : : ; aNg N initial states, or intervals, a1; : : : ; aN , partitioning [�; �]

fX(t); t � 0g Markov chain of order k with state space A

xl;k = (xl; : : : ; xl+k�1) k-state, composed of observed values in O starting at time l

Ok Set of k-states xl;k included in O

~al;k = (al; : : : ; al+k�1) k-state, composed of observed intervals in A
starting at time l. The component at is an element of A
assigned to time t, with t = l; :::; l + k � 1

Ak Set of k-states ~al;k. Set Ak biunivocally corresponds to Ok

ah;k = (ahk ; ahk�1 ; :::; ah1) Possible k-state of intervals in A without any reference
to the starting time. The index hw = 1; :::; N
points to an element of A for time lag w of k-state h

Faz jah;k = f~al;k : ~al;k � ah;k;al+k � azg Set of observed k-states whose sequence of intervals
of A is the same as the sequence of intervals of the possible
k-state ah;k, and evolving to state az 2 A at time l + k

Ak Set of k-states ah;k. The set is de�ned as the Cartesian
product of A with itself k times

� = fA�;1; : : : ; A�;#(�)g Partition of nonempty subsets of A

� Set of partitions � of A

� = (�k; �k�1; : : : ; �1) Multidimensional partition of Ak. Partition �w, w = 1; : : : ; k,
is the unidimensional partition of A referred to time lag w

�k Set of multidimensional partitions � of Ak

A�;h;k = (A�k;hk ; A�k�1;hk�1 ; :::; A�1;h1) h-th class of multidimensional partition �. The class is expressed
as an ordered sequence of classes of partitions �k; �k�1; : : : ; �1

fX�(t); t � 0g Markov chain of order k� with multidimensional state space Ak
�

partitioned by ��. Optimization problem (8)-(9)
is introduced to choose k� and ��

~O = (~x1; : : : ; ~xlgh) Series of lgh observations bootstrapped with Algorithm 3

Appendix B

Table 10 reports the 12 initial states partitioning the state space of the detrended series of Spain and
Germany. Each interval is identi�ed with the label used in the paper. In both cases, the upper limit of
the twelfth interval, i.e. �, represents a high enough value such that no price can be reasonably thought
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to be greater than it. For example, in our experiment we could take � = 1; 000; 000.

Table 10: Initial states, or intervals, partitioning the state space of the detrended series of electricity prices of Spain
and Germany.

Interval Interval of prices

label Spain Germany

1 [0; 13:21) [0; 8:26)

2 [13:21; 16:53) [8:26; 12:43)

3 [16:53; 20:22) [12:43; 17:18)

4 [20:22; 22:21) [17:18; 19:41)

5 [22:21; 24:79) [19:41; 22:45)

6 [24:79; 28:63) [22:45; 25:58)

7 [28:63; 32:28) [25:58; 31:49)

8 [32:28; 36:04) [31:49; 45:62)

9 [36:04; 40:81) [45:62; 55:40)

10 [40:81; 51:74) [55:40; 103:98)

11 [51:74; 61:99) [103:98; 170:17)

12 [61:99; �] [170:17; �]

Appendix C

Table 11 reports the coordinates of the 39 points computed by the Tabu Search algorithm. Notice that
for the Spanish instance it happened that in two consecutive executions the Tabu Search algorithm found
the same solution (see 
 = 0:475 and 
 = 0:5). The underlined coordinates represent the two solutions
�HS and �HG chosen for our analysis.
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Table 11: The points composing the two e�cient frontier approximations of Spain and Germany. For each value of

, we report the coordinates of the points found by the Tabu Search algorithm, i.e. the multiplicity measure m�H

and the distance indicator d�H .


 Spain Germany

m�H d�H m�H d�H
0:025 0:026 0:196 0:025 0:172

0:05 0:051 0:411 0:05 0:294

0:075 0:075 0:481 0:075 0:517

0:1 0:122 0:521 0:1 0:554

0:125 0:132 0:544 0:134 0:627

0:15 0:157 0:65 0:151 0:681

0:175 0:178 0:673 0:176 0:733

0:2 0:209 0:695 0:201 0:841

0:225 0:231 0:739 0:231 0:969

0:25 0:25 0:748 0:252 1:023

0:275 0:282 0:763 0:282 1:072

0:3 0:306 0:796 0:325 1:197

0:325 0:329 0:878 0:326 1:202

0:35 0:353 0:922 0:364 1:237

0:375 0:376 0:948 0:386 1:259

0:4 0:401 0:981 0:417 1:318

0:425 0:426 1:126 0:438 1:345

0:45 0:45 1:137 0:46 1:367

0:475 0:51 1:193 0:484 1:396

0:5 0:51 1:193 0:504 1:411

0:525 0:546 1:226 0:527 1:433

0:55 0:558 1:248 0:551 1:484

0:575 0:582 1:304 0:576 1:51

0:6 0:607 1:307 0:601 1:545

0:625 0:644 1:363 0:635 1:55

0:65 0:655 1:385 0:658 1:562

0:675 0:68 1:43 0:682 1:584

0:7 0:704 1:474 0:706 1:599

0:725 0:729 1:511 0:729 1:621

0:75 0:754 1:578 0:753 1:654

0:775 0:778 1:63 0:777 1:696

0:8 0:803 1:667 0:801 1:702

0:825 0:827 1:711 0:833 1:739

0:85 0:852 1:756 0:857 1:783

0:875 0:877 1:785 0:88 1:805

0:9 0:901 1:822 0:905 1:835

0:925 0:926 1:867 0:928 1:868

0:95 0:951 1:911 0:952 1:912

0:975 0:975 1:956 0:976 1:956
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