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Abstract: Hidden Markov Models can be considered as an extension of mixture models,
which allows for dependent observations and makes them suitable for financial applica-
tions. In a hierarchical Bayesian framework, we show how reversible jump Markov chain
Monte Carlo techniques can be used to estimate the parameters of the model, as well as
the number of regimes. An application to exchange rate dynamics modeling is presented.
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1 Introduction

A Hidden Markov Model (HMM) or Markov Switching Model is a mixture model whose
mixing distribution is a finite state Markov chain. HMM have been successfully applied
to financial data. Engel and Hamilton (1990) modeled segmented time-trends in the US
dollar exchange rates via HMMs. HMMs reproduce most of the stylized facts about daily
series of returns (Rydén et al., 1998) and accurately estimate stochastic volatility (Rossi
and Gallo, 2006).

The main problem associated with HMMs is to choose the number of states, i.e. the
number of generating data processes, which differ one from another just for the value of
the parameters. In a classical perspective, choosing the number of states would require
hypothesis testing with nuisance parameters, identified only under the alternative. Thus,
the regularity conditions necessary to apply asymptotic theory do not hold and the limiting
distribution of the likelihood ratio test must be approximated by simulation, an approach
demanding enormous computational efforts. Penalized likelihood methods such as the
Akaike and Bayesian information criteria are less demanding, though, they produce no
number quantifying the confidence in the results, such as a p-value.

In a Bayesian context there are different suggestions for choosing the number of states in a
HMM. For example, Otranto and Gallo (2002) adopt a Bayesian nonparametric approach,
based on Dirichlet processes. Following Robert et al. (2000) and Richardson and Green
(1997), we use a fully Bayesian analysis, based on the Reversible Jump (RJ) algorithm,
developed in Green (1995), which allows for the change of dimension of the parameter
space, changing the number of states from one iteration to the other.

The paper is organized as follows: details of the prior modeling are given in Section 2;
Section 3 describes Bayesian estimation of the parameters and model selection.

An application is in progress. We consider the well-known studies about exchange rate
dynamics (Otranto and Gallo, 2002; Engel and Hamilton, 1990) in order to compare our
results with those obtained in the past.



2 The model

Lety=(y;) ,T:1 be the observed changes in the exchange rate. We assume that the marginal
distribution for an observation y; is

k
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conditional on weights 7 = (m;)¥_,, means u = (1;)*_; and standard deviations ¢ =
(0:)%_,, where ¢(-;;,07) is the density of the N(u;, 67). We further postulate the ex-
istence of an unobserved variable, denoted s = (st),T: |» that takes on values from 1 to k.
This variable characterizes the “state” or “regime” of the process at any time ¢: if s; = i,
y; is assumed to be drawn from a N (u;, Giz) and the trend in the exchange rate is given by
Ui. We then assume a Markov chain for the evolution of the state variable and, thus, the

process for s; is presumed to depend on the past realizations of y and s only through s,_;:
p(sy = jlsi—1 =1) =Aj ()

The vector of weights 7 is simply the stationary vector of the transition matrix A = (4;;)
and thus satisfies 7'A = @’. Thus the model in (1) can be analogously expressed as
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Integrating out s; in (3), using its stationary distribution, leads back to (1). Finally, we
assume that the number of components (regimes) k is unknown and subject to inference.
In a Bayesian context, we also assume that:

* the number of components k is a priori uniform on the values {1,2,...,K};

* the rows of the transition matrix have a Dirichlet distribution: A;; ~ D(§;), for
i=1,....k where §; = (&) ;

e u;and sz are drawn independently, with priors g; ~ N(&, k') and sz ~Ga(n,{),
the latter parametrised so that the mean and the variance are 11/¢ and 1 /{?;

* { follows a Gamma distribution with parameters f and h.

These settings generate the hierarchical model presented in Figure 1.

3 Bayesian estimation and model selection

The complexity of the mixture model presented in this paper requires Markov chain
Monte Carlo (MCMC) methods to approximate the posterior joint distribution of all the
parameters. Details of these computational methods can be found in Tierney (1994).

To generate realizations from the posterior joint distribution, we alternate the following
moves at each sweep of our MCMC algorithm: a) updating the transition matrix A, b)
updating the state variables s, ¢) updating the means i, d) updating the standard deviations
o, e) updating the hyperparameter §, f) updating the number of regimes k.

The first five moves are fairly standard and all performed through Gibbs sampling. In
particular: (a) and (b) follow Robert et al. (1993). In (a), the i-th row of A is sampled
from a Dirichlet D(0;1 + nji, . .., O + nix), where n;; = ZIT;II H{s; =i,5041 = j} is the
number of jumps from regime i to regime j and I{-} denotes the indicator function.



Figure 1: Directed acyclic graph for the complete hierarchical model.
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In (b), s1,...,s7 are sampled one at a time from ¢ = 1 to t = T, with conditional proba-

bilities p(s; =1i|---) o< A5, i@ (ve3 i, criz)?List+1 where - --” denotes ‘all the other variables’;
for t = 1 the first factor is replaced by 7; and, for ¢t = T, the last factor is replaced by 1.
Moves (c)-(e) follow Richardson and Green (1997) and, for identifiability purpose, we
also adopt a unique labeling in which the y; are in increasing numerical order. As a con-
sequence the joint prior distribution of y; is k! times the product of the individual normal
densities, restricted to the set (; < U < ... < Ug. The y; can be drawn independently from
Wil -+~ N (672 Lpgmive + KE) /(07 2ni+ %), (67 *n; + k)71, where n; = #{t : 5, = i}
is the number of observations currently allocated to the i-th regime. In order to preserve
the constraints on the ;, the move is accepted provided that the order is unchanged.

In (d) we update each component of the vector 62 independently, drawing it from its full
conditional o, %|--- ~ Ga (N +n:i/2,8+ Xps=i e — 1i)%/2) -

In (e) we sample ¢ from its full conditional: {|--- ~ Ga (f +kn,h+ Yr, 6172) :
Updating the value of k implies a change of dimensionality for the components p and
o, the state variables s and the transition probability matrix A. We follow the approach
used by Richardson and Green (1997) consisting in a random choice between splitting
an existing state into two, and merging two existing states into one. The probabilities of
these alternatives are by and d; = 1 — by, respectively, when there are currently k states. Of
course, d; = 0 and bg = 0, and otherwise we choose by =d; = 0.5, fork=2,3,...,K—1.
For the combine proposal we randomly choose a pair of states (i1,i,) that are adjacent in
terms of the current value of their means. These two states are merged into a new one,
labeled i*, reducing k by 1. We then reallocate all those y, with s; = i} or s; = i) to the
new state i* and create values for p;x, G,%, m;= and for the transition probabilities from and
to the states involved in the move in such a way that the new hidden Markov model and
the old one both have the same first and second moments.

The split proposal starts by choosing a state i* at random, which is then split into two
new ones labeled i; and ip, augmenting £ by 1. Then we reallocate all those y, with



s; = i between the two new states, and create values for 7;,, ;,, Wi, li,, Oj,, O;, and the
transition probabilities from and to the states involved in the move. The aim is to split i
in such a way that the dynamics of the hidden Markov chain are essentially preserved. We
accomplish this generating appropriate vectors in the same manner proposed by Robert
et al. (2000), with some straightforward adjustments (Castellano and Scaccia, 2007).
According to the RJ framework, the split and combine move are accepted with a proba-
bility computed to preserve the reversibility between the states of the MCMC algorithm.
After allowing for a burn-in period, the algorithm provides us with draws from the joint
posterior distribution of (A, u,62,{,k). From this, we can estimate the posterior proba-
bility of k as the ratio between the number of times the algorithm visited the model with
k regimes and the total number of sweeps.

We can also verify the existence of long swings in the exchange rates, as hypothesized
by Engel and Hamilton (1990), by testing k = 2 against k = 1 using the Bayes factor

By = I,z %Ii / plk = 1 ) where p(k = c) and p(k = c|y) are respectively the prior and the

posterlor probablhtles of the model with ¢ regimes. The larger B, the greater the evi-
dence provided by the data in favour of the model with 2 regimes.

Conditioning on a certain number of regimes, from the MCMC output we can easily make
inferences on any other parameter of the model. However, if the purpose is to produce out-
of-sample forecasts of the exchange rate, rather than conditioning on a particular model,
we may prefer averaging over all the possible models, taking then into account our uncer-
tainty about the true generating model. This is straightforward from the MCMC output;
see Castellano and Scaccia (2007) for further details.
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