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Abstract. This paper reconsiders event-study methodology in light of evidences
showing that Cumulative Abnormal Return (CAR) can result in misleading infer-
ences about financial market efficiency and pre(post)-event behavior. In particular,
CAR can be biased downward, due to the increased volatility on the event day and
within event windows. We propose the use of Markov Switching Models to capture
the effect of an event on security prices. The proposed methodology is applied to a
set of 45 historical series on Credit Default Swap (CDS) quotes subject to multi-
ple credit events, such as reviews for downgrading. Since CDSs provide insurance
against the default of a particular company or sovereign entity, this study checks
if market anticipates reviews for downgrading and evaluates the time period the
announcements lag behind the market.
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1 Introduction

An event-study is the name given to the empirical investigation of the rela-
tionship between security prices and economic events. It allows to estimate
and draw inferences about the impact of an event in a particular period
or over several periods. The most common approach involves four steps: 1)
identification of the event dates for a sample of securities subject to the dis-
closure item of interest (i.e. rating announcements) and creation of equally
sized event windows around each event date; 2) selection of an appropriate
reference period preceding each event window (the so-called estimation pe-
riod), used to estimate the mean and standard deviation of the returns of
each security, under normal market conditions; 3) computation of Abnormal
Returns (ARs) on each security supposed to be influenced by the event and
for each event window around the announcement date; 4) computation of
the mean ARs across securities in the sample, possibly cumulated over the
event windows, and comparison with the mean returns estimated under nor-
mal market conditions, through parametric and non parametric test statistics
(Brown and Warner (1985); Kothari and Warner (1997)).
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In most situations, event-study tests relying on the Cumulated Abnormal
Return (CAR) methodology may provide misleading results because of the
kurtosis and volatility clustering characterizing financial time series. There-
fore, we propose to incorporate into the classical event-study methodology
the ability of Markov Switching Models, also known as Hidden Markov Mod-
els (HMMs), to model state-dependent means and variances of the ARs.
In practice, instead of performing the hypothesis testing described in the
fourth step of the above illustrated methodology, we model the ARs in each
event window through an HMM characterized by two states, normal and ab-
normal market conditions, and look at the probability that the generating
process is in each of the two states, at any time in the event window. In
this way, we explicitly account for the kurtosis and the volatility clustering
commonly observed in financial time series. We adopt a Bayesian perspective
and rely on the flexibility of hierarchical modeling. It is worth to notice that
HMMs have been successfully applied to financial time series. For instance,
segmented time-trends in the US dollar exchange rates (Engel and Hamilton
(1990), Castellano and Scaccia (2010), Otranto and Gallo (2002)), stylized
facts about daily returns (Rydén et al. (1998)), option prices and stochas-
tic volatilities (Rossi and Gallo (2006)), temporal behavior of daily volatility
on commodity returns (Haldrup and Nielsen (2006)) have been modeled via
HMMs.

In this paper we apply the proposed methodology to study the reactions
of Credit Default Swap (CDS) quotes to reviews for downgrading announced
by three major credit rating agencies (Moody’s, Fitch and Standard&Poor’s),
in order to examine if and to what extent this market responds to these an-
nouncements which should reflect the latest available information. The focal
idea is to analyze if rating agencies have access to non-public information,
implying that their announcements can be viewed as conveying extra in-
formation to the market, and if the size and variance of ARs may provide
information about the creditworthiness of a specific company. Basically, if
reviews for downgrading convey new information to the market, CDS quotes
should react after the announcement and a significant increase in market
volatility should be expected at the event day or after the announcements.
Otherwise, it might be possible that reviews for downgrading only reflect in-
formation already discounted by the market, implying that CDS quotes do
not react to watchlisting and abnormal performances are observed before the
announcements.

Data over the period 2004 - 2009 for 45 international companies belong-
ing to different credit grades are taken into consideration and the effects of
reviews for downgrading on CDS quote generating process are investigated.

The paper proceeds as follows: the Markov Switching re-evaluation of the
classical event-study methodology and the priors on model parameters are
illustrated in Section 7; Section 3 deals with computational implementation;
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Section 4 discusses the application on CDS quotes; conclusions are reported
in Section 5.

2 The revised event-study methodology

The approach proposed in this paper to investigate the above mentioned
hypotheses is based on the Markov Switching re-evaluation of event-study
methodology. In this context, the event window is set equal to almost three
months, starting 60 business days before a review for downgrading and ending
20 business days after the announcement, thus the series considered will be
indexed by t ∈ [−60,+20]. In the following, we will use t0 and T to indicate,
respectively the starting day and the ending day of the event window, so
that t0 = −60 and T = 20. If the announcement is fully anticipated, then
the CDS quote generating process should adjust prior to t = 0, the day
of the announcement. If the rating announcement has a new informational
content, it should have an effect on price at t = 0 and, in the case of post-
announcement effect, the impact of the review for downgrading might be
delayed after t = 0. This choice of the event window aims at analyzing the
reactions of the markets before and around the day of the announcement,
the period in which a potential market reaction is expected, as many studies
have shown (Kliger and Sarig (2000); Steiner and Heinke (2001); Norden and
Weber (2004); Hull et al. (2004); Heinke (2006)).

To examine the impact of reviews for downgrading on the generating
process of CDS quotes, we focus on the daily returns of each CDS, defined
as:

Rt = Pt − Pt−1,

where Pt is the market value of the CDS at time t. Daily returns are then
used to calculate standardized ARs as:

yt =
Rt −R
sR

,

where the sample mean and standard deviation of the returns for each CDS
subject to review for downgrading are estimated over an estimation period
of 100-day preceding each event window, so that R =

∑−61
t=−160Rt/100 and

s2
R =

∑−61
t=−160(Rt −R)2/99.

In a HMM formulation, the distribution of each standardized AR, yt, is
assumed to depend on an unobserved (hidden) variable, denoted by st, that
takes on values from 1 to k. The vector of hidden variables s = (st)Tt=t0
characterizes the “state” or “regime” in which the AR generating process is
at any time t. The yt are assumed to be independent, conditional on the st’s:

yt|st ∼ fst(yt) for t = t0, t0 + 1, . . . , T , (1)

with fst(·) being a specified density function. We further postulate that the
dynamics of s are described by a Markov Chain with transition matrix Λ =
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(λij)ki,j=1, implying that st is presumed to depend on the past realizations of
y and s, only through st−1:

p(st = j|st−1 = i) = λij .

Since we apply the HMM to ARs of CDSs, we implicitly assume yt to be
normally distributed, so that the model in (1) becomes

yt|s,µ,σ ∼ φ(·;µst , σ2
st) (2)

conditional on means µ = (µi)ki=1 and standard deviations σ = (σi)ki=1, where
φ(·;µi, σ2

i ) is the density of the N(µi, σ2
i ). Thus, if st = i, yt is assumed to be

drawn from a N(µi, σ2
i ). Notice that, if we let π being the stationary vector of

the transition matrix, so that π′Λ = π′, and we integrate out st in (2) using
its stationary distribution, the model in (2) can be analogously formalized as

yt|π,µ,σ ∼
k∑
i=1

πiφ(·;µi, σ2
i ) for t = t0, t0 + 1, . . . , T .

In this paper the number of states, k, is assumed equal to 2, as briefly
explained in Section 4. In a forthcoming paper, k will be considered unknown
and subject to inference, as well as the other parameters of the model.

In a Bayesian context, the uncertainty on the parameters of the model is
formalized using appropriate prior distributions. Weakly informative priors
are chosen, by introducing an hyperprior structure. We assume:

a) µi|σ2
i ∼ N (ξ, κσ2

i ), independently for each i = 1, . . . , k.
b) σ−2

i ∼ G(η, ζ), independently for each i = 1, . . . , k, with the mean and
the variance of the Gamma distribution being η/ζ and η/ζ2.

c) κ ∼ IG(q, r), with IG denoting the Inverse Gamma distribution.
d) ζ ∼ G(f, h).
e) λij ∼ D(δj), for i = 1, . . . , k where D denotes the Dirichlet distribution

and δj = (δij)ki=1.

3 Computational implementation

In order to approximate the posterior joint distribution of all the parameters
of the above HMM, we apply Markov Chain Monte Carlo (MCMC) methods
and exploit the natural conditional independence structure of the model so
that the joint distribution of all variables, conditional to the fixed values of
the hyperparameters, is:

p(y,µ,σ, s,Λ, ζ, κ|δ, f, h, q, r, ξ, η, k)

= p(y|s,µ,σ)p(s|Λ)p(Λ|δ, k)p(µ|σ, ξ, κ, k)p(κ|r, q)p(σ|η, ζ, k)p(ζ|f, h).

To generate realizations from the posterior joint distribution, the parameters
of the model are in turn updated, by means of Gibbs sampler. At each sweep
of the MCMC algorithm, the following steps are performed:
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Updating Λ. The i-th row of Λ is sampled from D(δi1 +ni1, . . . , δik +nik),
where nij =

∑T−1
t=t0

I{st = i, st+1 = j} is the number of transitions from
regime i to regime j and I{·} denotes the indicator function.

Updating s. The standard solution for updating s would be to sample
st0 , . . . , sT one at a time from t = t0 to t = T , drawing values from
their full conditional distribution p(st = i| · · · ) ∝ λst−1iφ(yt;µi, σ2

i )λist+1

where ‘· · · ’ denotes ‘all other variables’. For a faster mixing algorithm
(Scott (2002)), we instead sample s from p(s|y,Λ) through a stochas-
tic version of the forward–backward recursion. The forward recursion
produces matrices P t0+1,P t0+2, . . . ,P T , where P t = (ptij) and ptij =
p(st−1 = i, st = j|y1, . . . , yt,Λ). In words, P t is the joint distribution of
(st−1 = i, st = j) given parameters and observed data up to time t. P t

is computed from P t−1 as ptij ∝ p(st−1 = i, st = j, yt|y1, . . . , yt−1,Λ) =
p(st−1 = i|y1, . . . , yt−1,Λ)λijφ(yt;µj , σ2

j ) with proportionality reconciled
by
∑
i

∑
j ptij = 1, where p(st−1 = i|y1, . . . , yt−1,Λ) =

∑
j pt−1,i,j can be

computed once P t−1 is known. The recursion starts computing p(st0 =
i|yt0 ,Λ) ∝ φ(yt0 ;µi, σ2

i )πi and thus P t0+1. The stochastic backward re-
cursion begins by drawing sT from p(sT |y,Λ), then recursively drawing
st from the distribution proportional to column st+1 of P t+1. In this way,
the stochastic backward recursion samples from p(s|y,Λ), factorizing
this as p(s|y,Λ) = p(sT |y,Λ)

∏T−1
t=t0

p(sT−t|sT , . . . , sT−t+1,y,Λ) where
p(sT−t = i|sT , . . . , sT−t+1,y,Λ) = p(sT−t = i|sT−t+1, yt0 , . . . , yT−t+1,Λ)
∝ pT−t+1,i,sT−t+1 .

Updating µ. Letting ni being the number of observations currently allo-
cated in regime i, the µi can be updated by drawing them independently

from µi| · · · ∼ N
(
κ
∑
t:st=i

yt + ξ

1 + κni
,

σ2
i κ

1 + κni

)
.

Updating κ. We sample κ−1 from κ−1| · · · ∼ G
(
q + k

2 , r + 1
2

∑k
i=1

(µi−ξ)2
σ2
i

)
.

Updating σ. For identifiability purpose, we adopt a unique labeling in which
the σi’s are in increasing numerical order. Hence, their joint prior distri-
bution is k! times the product of the individual IG densities, restricted
to the set σ1 < σ2 < . . . < σk. The σi can be drawn independently from

σ−2
i | · · · ∼ G

(
η +

1
2

(ni + 1), ζ +
1
2

∑
t:st=i

(yt − µi)2 +
1

2κ
(µi − ξ)2

)
. The

move is accepted, provided the invariance of the order.
Updating ζ. We sample ζ from ζ| · · · ∼ G

(
f + kη, h+

∑k
i=1 σ

−2
i

)
.

4 An Application

To estimate the parameters of the model and the posterior probabilities of
yt being in each of the states, at any time t ∈ [−60,+20], we performed
100,000 sweeps of the MCMC algorithm, allowing for a burn-in of 10,000
sweeps. Notice that our data set considers 45 historical series of CDSs and
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related reviews for downgrading, leading to 57 non-overlapping events (in
the sense that we only analyze subsequent event time windows including one
event) and, thus, to 57 different ARs series. The MCMC algorithm was run
independently for each of the 57 series of ARs. Since most of the ARs in the
events windows are well represented by two regimes, characterized by high
and low volatility respectively, we set k = 2.

Performing a preliminary analysis, we find that the probability of being in
the high volatility state in each event window of the data base, is characterized
by different patterns. As a consequence, cluster analysis is performed by
applying the k-means algorithm to the event windows. Using the Schwarz
criterion, five clusters were selected.

Figure 1 shows the averaged posterior probabilities of being in the high
volatility regime for the event windows belonging to the first four clusters.
Cluster (a) highlights that reviews for downgrading are fully anticipated by
the market. In this cluster the probability of being in the high volatility
regime is larger than 0.5 almost fifty days before the announcement occurs
and it is relevant the absence of announcement and post-announcement ef-
fects. This cluster is the most interesting among those under consideration,
because it shows that reviews for downgrading announced by rating agencies,
which should reflect the latest available information, are largely anticipated
by an increase in the volatility of ARs and announcements do not convey
new information to the market.

Cluster (b) groups event windows for which the volatility of the abnormal
returns is drawn from the high volatility state almost twenty days before the
event occurrence. This implies that CDS market anticipates the announce-
ments. At the same time, the ARs of the event windows belonging to this
cluster show that volatility remains in the high state also around t = 0 and
for twenty days after the announcements, highlighting also the presence of an-
nouncement and post-announcement effects. From a financial point of view,
it may be useful to note that this behavior is probably due to the specific
nature of the events under consideration, which represent only reviews for
possible downgrades and not effective downgrades, meaning that announce-
ments are not always followed by a reduction in the effective creditworthiness
of the reference entity. Persistence of the high volatility state after t = 0 may
be interpreted as a measure of the market’s expectation regarding the fu-
ture effective downgrading (in the data base under consideration the 65% of
reviews for downgrading is followed by effective downgrading in an average
period of 80 days).

The ARs of the event windows belonging to cluster (c) show that market
volatility anticipates the reviews for downgrading by almost ten days and
decreases very quickly about ten days after the event. For the ARs of the
event windows belonging to this cluster, we can conclude that nevertheless the
rating announcement is anticipated by the market via an increase in volatility,
it is still present an announcement effect, while the post announcement effect
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Fig. 1. Estimated mean posterior probabilities of being in the high volatility regime
for series belonging to four different clusters.

is largely reduced. The fourth cluster (d) collects event windows for which
the mean posterior probability of being in a high volatility state exceeds 0.5
only at t = 0, implying the existence of an announcement effect.

The fifth cluster, not shown here, is a residual cluster which collects event
windows characterized by a higher degree of heterogeneity than those in the
other clusters. In this case, the mean posterior probability of being in a high
volatility regime is not particularly meaningful.

5 Conclusions

This study was conducted to answer fundamental questions about the ef-
fectiveness of event-study methodology in capturing the effect of events on
financial asset behavior. We used a data set on CDS quotes and credit rat-
ing data. It covers the period from June, 2004 to October, 2009. We choose
the five-year CDS quotes since this is the benchmark maturity in the CDS
market. We collected the reviews for downgrading (watchlistings) announced
by three major rating agencies (Fitch, Moody’s and Standard&Poor’s) for
the sample firms in order to verify whether announcements carry new infor-
mation to the CDS market or not. At the end of the sampling period, we
selected 57 non-overlapping events.

Since the estimated effect of events on security behavior investigated by
classic event-study methodology may be biased downward, because of the
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averaging effect and the increased volatility around events, we re-evaluate
the classical approach by introducing a HMM characterized by two volatility
regimes (high and low) to model the ARs of each event window. We find
that CDS market anticipates reviews for downgrading and we show, through
cluster analysis, that the anticipation period can follows different patterns.
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