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Bayesian Hidden Markov Models
for Financial Data

Rosella Castelano and Luisa Scaccia

Abstract Hidden Markov Models, also known as Markov Switching Models, can
be considersd an extension of mixture models, allowing for dependent observe-
tions. The main problem asscciated with Hidden Markov Models is represented by
the choice of the namber of regimes, i.e. the number of generating data processes,
which differ one from another jusr for the value of the parameters. Applying a hier-
archical Bayesian framework, we show that Reversible Jump Markov Chain Monte
Carle technigues can be used to estimate the parameters of the model, as well as
the number of regimes, and to simulate the posterior predictive densities of future
observations. Assuming a mixture of normal distributions, all the parameters of the
model are estimated using a well known exchange rate data set.

1 Imtroduction

A Hidden Markev Model (HMM) or Markov Switching Model is 2 mixture model
whose mixing distribution is a fipite state Markov Chain. In practice, given a data
set indexed by time, the distribution of each observation is assumed 1o depend on
an unobserved variable, hidden “state” or “regime”, whose transition is regulated
by a Markov Chain. HMMs have been successfully applied to financial time sedes:
very often financial data show nonlinear dynamics which are possibly due to the
existence of two or more regimes, differing one from another only for the value
of the parameters. For instance, segmented time-trends in the US doilar exchange
rates, Engel and Hamilton {1990), stylized facts about daily retums, Rydén {1998),
option prices and stochastic volatilities, Rossi and Gallo (2006}, temporal behavior
of volatility of daily returns on commodities, Haldrup and Nielsen (2006), have zlso
been modeled via HMM:s.

The main problem associated with HMMSs is to select the number of regimes (i.e.
the number of generating data processes). In a classical perspective, this reguires
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hypothesis testing with auisance parameters, identified only under the aliernative.
Thus. the regularity conditions for the asymptotic theory to hold are not met and the
limiting distribution of the likelihood ratio test must be approximated by simula-
tion, an approach demanding enormous computational efforts. Penalized likzlihood
methods, as the Akaike and Bayesian information criteria, though are less demand-
ing, do not produce a number quantifying the cenfidence in the results (Le. p-values).

In & Bayesian context, several approaches to choose the number of regimes can
be listed. A Bayesian non-parametric approach, based on a Dirichlel process (DP)
with, a priori, infinite number of regimes is described in Ctranto and Gallo (2002),
Simulations from the posterior distribution of the process are used to estimate the
posterior probabilities of the number of regimes. An zlternative approach is based
on allocation models: a iatent variable is explicitly introduced (o allocate each obser-
vation to a particular regime, Robert et al. (2000). Ther, the Reversible Jump (R])
algorithm, Green (1993), is used o sample from the posterior joint distribution of
all the parameters, including the number of regimes.

In this paper, we prefer to deal with the larter approach for several reasons. From
a theoretical point of view, the predictive density of a future chservation, based on
a DP, assigns to this observation a non-null probability of being exactly equal to
one of those already observed. Such-a behavior is highty unrealistic if data points
are assumed to be drawn from a continuous distribution. Moreover, nen-parametric
approaches are strongly affected by the influsnce of the prior distribution on the
posterior one, so that the likelihood never dorminates the prior and the inferential
results are particularly sensitive to prior assumptions. Furthermore, ir: a DE, a single
parameter controis the variability and the clustering, making the prior specification
difficult. Finally, the DP is well known to favor, a priod, unequal allocations and
this phenomenon becomes more dramatic as scon as the number of observations
increases. The unbalance in the prior sllocation distribution often persists also a
posteriori, Green and Richardson (2001). However, the model proposed in Robert
et al. (2000) only allows for regimes being different because of their volatilities. We
extend this approach to permit the existence of regimes characterized by different
means and/or variances.

The paper is organized as follows: the model and prior assumptions are illus-
frated in Sect. 2; Sect. 3 deals with computational implementation; Sect. 4 discusses
Bayesian inference and forecasting; finzlly, in Sect. 5 an application is considered.

2 The Mode]

Let y = {y:)7_, be the observed data, indexed by time. In HMMs, the heterogeneity

in the data is represented by a mixture structure, that is, 2 pair (s;. y;), with s, being
an unobserved state variable characterizing the regime of the process at any time ¢
and y; being independent conditional on the s, 's:

Yelse ~ fs, (3e) for 1 =1.2.. .., T. M
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y b -1 & opt
with f:, (-) being a specified density function. Assuming S = { ..., ki be;,:chv :sel
of pﬁss[ible resimes, HMMs further postulate that the dynamlcskof s = (s,),?l alre
described by 2 Markoy Chain with transition matrix A = (A4 ;. Accordingly,
5; is presumed to depend on the past realizations of y and s, only through §—;:
IAE

pls = Jlsi=1 = 1) = l;j .
We study mixtures of normal distributions, so that the model in {1) becomes

: 2
yels oo ~ ¢ s, 05,) {2)
; k

) e i sa = (o7)i_,., where

conditional on means g = (), and s;;andard d‘ewauEn. .S(,VL‘:S)L,@18 ere

& (5 i a?) is the density of the N(ui, o7). Thus, if 5, = 1. pr is 2 med 10 be

wn fro (i L, 1 i ary vector

drawn from a N (. 0?). Notice that, if we_lel = being the_ stationary cuor of

sransition matrix, so that o' A = =’ and we integrate out §; in (2) using its stauonary
distribution, the model in {2} can be analogously formalized as

k
e poo ~ Y (o)

i=%

for t=1,2,....7.

In a classical perspactive, the model in (2) can be estimated, cqndmoz:hal On;[;
by means of EM algerithm, Scott (2002). Then, as alr?,ady mentilf;:?ed, e :b; !
problem is to choose among different models, characterized by a different nu

o
o rlixbgn;zycsian context, we formalize the unc_ertainty on _the pgrarg;tm:; otf t:;,
model, s weil as on the number of regimes, k, using appropriate prior isiribuy uzh#
We choose weakly informative priors, introc}ucmg an hyperprior strgcu_.mrei S0 e
Lilo? ~ N(£.xo?) and 072 ~ Ga(n, (). independently for each i = . ./,gz,
withll:he mean and the variance of the Gamma c?xstgbupou b_etng n/¢ and 7 amﬁ
Then we assume & 1o follow an inverse Gamr_na distribution with par]am;.terig "
r, and ¢ to foliow a Gamma distribution with _par:amme.tcrs f and }i ina Dy(a "
rows of the transition mairix have a Dirichiet distribution, s0 thgt ,-jk«_a ri {3 r}
fori = 1.....k where §; = (8;;)¥_,, while the number of regimes k is a p "
uniform on the values {1,2.... K}, with K being a.pre-spcaﬁed m'tcferl z;c:jrru
sponding to the maximum hypothesized number of regimes. These Sem‘?ﬁf eb l’ieﬂp
to the hierarchical model in Fig. 1. The choice of the hyperparameters will be ¥

discussed in Sect. 5.

3 Computational Implementation

in order to approximate the posterior joint distribution of all the paramc'eters offt;;
above mixture model, Markov Chain Monte Caric (MCMQ met%]ods are apt]:; :'01-
{delails can be found in Tierney (1994)). To generate realizations from the posten
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Fig. 1 Directed acyclic
graph for the complere
hierarchical mods!

joint distribution, at each sweep of the MCMC algorithm, we update in turn: {a)
the ltransition matrix A, (b} the state variable s, (¢) the means g, (d) the standard
dev'lations o, (e} the hyperparameter «, (f) the hyperparameter ¢, (g) the number of
regimes k. The first six moves are fairly standard and all performed through Gibbs
sampling.

In particular, in {a), the /-throw of A is sampled from D(8;) +n1, ..., S+nik),
where. nij o= 2,7:11 I{s, =i,5,21 = j}is the number of transitions from regime i
to regime ;j and J{-} denotes the indicator function, Robert et al. (1993).

In (b), the standard solution for updating s would be to sample s1....,sr one
a2 time from ¢+ = 1 tw ¢ = T, drawing values from their full conditional
distribution p(s, = {]---) « ls[wi;c‘b(y,;u,-,af')l;s,“ where “---” denotes “all
other variables”. For a faster mixing algorithm, as in Scott (2002, and Castellano
and Scaccia (2007), we instead sample s from p(s|». A) through a stochastic ver-
sion of the forward—backward recursion. The forward recursion produces matrices
Pa,..., Pr, where Pr=(py;)and poyj = plsc—1 = 6,5 = jly1..... 3, A) In
words, P, is the joint distribution of (5,—; = i,5: = j) given parameters and
qbsewad data up to time . P, is computed from P,—; as Peij © p(s,_l =i,8 =
Lyiyn ey, A) = plsim = ilyieo o et M)A (e 1y, 0%) with pro-
portienality reconciled by >, 5° ; pui; = 1, where p(s,—) = i|y1..... LYim1. A =
Z Pe—1,i,j can be computed once P,y is known. The recursion starts computing
p_(sl = i|y1, A) o (¥ 1. o 2)x; and thus Pz. The stochastic backward recur-
sion ‘begins by drawing sz from p(sr|y.A). then recursively drawing 5, from the
distribution proportional fo column 5,4 of P,+1. In this way, the stochastic back-
ward recursion allows to sample from p(s)y.A), factorizing this distribution as
plsly. AY = plorly. AYTLZ) pOST—lsT. .. ST—rs1. 3. A) where pls7—, =
i!STs—n.--ST—rvla,VA} = plsr— = iSTor+1.¥1..-.. Yror+1.A)
PT—!+1,!’,ST_,+| .

I‘n (~c}, for identifiability purpose. we adopt a unique labeling in which the w;’s
are in increasing numerical order, Richardson and Green (1997). Hence, their joint

T ST A b T A A

e brun b e e e m 4
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prior distribution 1s &} times the product of the individual normal densities, restricted
10 the et 1 < fo < ... < W4k. The u; can be drawn independently from pu;|---

oty =i YiHE otk ; F yats
~N ( l_z_m . 1-‘.—’:::1,- , i being the number of observations currently allo-

cated in regime i. The move is accepted, provided the invariance of the order.
In (d) we update each component of the vector o independently, drawing 072

fromo; - ~Gafn+ = (f? +1)C+ Z(J’r pi)? T3 ( ~&?
1.5;—!
, -1 —1y.. : PRI o S 7 Sl
in (e) we sample «~" from 7]--- ~ Ga (q + 532 w—;z—) and,

finalty, in (£} we sample ¢ from {|--- ~ Ga (_f' + kah+ 7'!_1 o7

Updating & implies a change of dimensionality for u, ¢ and A We follow the
approach used in Richardson and Green (1997) which consists in a random choice
between spiitting an existing regime into two, and merging two existing regimes
into one. For the combine proposal we randomly choose a pair of regimes (3. /2)
that are adiacent in terms of the current value of their means. These two regimes
are merged into 2 new one, i *, reducing & by 1. We then realiccate all the y;, with
§ = iy or §, = Iz, 1 the new regime {* and create values for pi-, cr{.:"h i+ and
for the transition probabilities from and to the regimes involved in the move. This
is performed in such a way to guarantee that the new HMM and the old one both
have the same first and second moments. The split proposal starts with the random
choice of regime i * which is splitted into two new ones, iy and is, augmenting &
by 1. Accordingly, we reailocate the y, with 5, = i* between I and iz, and create
vatues for 7, , iy, i) fiz» Oiy» Gr, and the transition probabilities for the regimes
involved. The aim is to split i* in such a way that the dynamics of the Hidden
Markov Chain are essentially preserved, Robert et al. {2000). The move is accepted
with a probability computed to preserve the reversibility between the states of the
MCMC algorithm. More details on computaticonal issues can be found in Casteliano
and Scaccia (2007).

4 Bayesian Inference and Forecasting

After & burn-in period, to guarantee the convergence of the chain to irs stationary
distribution, the R algorithm produces at each sweep 1, forz = 1,.... N, a draw
(™ AW 50 gl GO0 () rin)y from the joint posterior distribution of all the
parameters, including k. The sample obtained after N sweeps can be used 1o esti-
mate all the quantities of interest. For instance, we can easily estimate the posterior
distribution of the number of regimes 25 the proportion of times each model is visited
by the algorithm, i.e. f{k = Ljy) = TN 1{k") = £}/N = N¢/N. where N¢ is
the number of times the model with £ regimes is visited.
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Conditioning on a particular model, say My, the cne with £ regimes, any other

parameter of that model can be estimated, Richardson and Green (1997} Esti-
mating the hidden states s often represents a key question in applied problems.
Inference on s derives from its posterior p{s|y), a high-dimensional distribution
that must be summarized to be understood. In general, it is sufficient to summa-
rize it through its marginal distributions p{s, = i{y), whose obvious estimates are
Blse = i3) = Tty L1 = 11/ Ny . More efficient estimates demand small
additional computational effort, as shown in Castellano and Scaccia (2007).
Finally, when historical series are analysed, the main goal is, generally, Lo
forecast future values of the observed variabie, on the basts of the information avail-
able up o time 7. In a Bayesian contex(, irferences on future observations, i.e.
Y = (yrs1.. ... YT+¢ ), are based on their posterior predictive density, which can
be defined into two different ways, depending on what we consider as “information
available at time 7. If we believe that data are generated by a specific model, say
My, the information available up to time T will encompass the generating model

and the observed data up to time T. Then, the posterior predictive density for ¥
will be:

oYy, My) =/ PY |y, Outr Me)p(0as, |y, Me)d 8 g, (3)

®u,

where @ pr, is the vector of all parameters (except k), including the state variable,
under the model with £ regimes, and @y, is the relative parameter space.

Otherwise, the uncertainty about which one is the tree generating model, within
a set of possible ones, can be expressed through model averaging, defining the
posterior predictive density of ¥ as:

K

PY|y) =" p(¥iy, Me)p(Myliy) . @
k=1

Where p_(Yiy,M;c) is defined in (3). Notice that in (4), we consider as available
mfor_mauon attime 7" only the observed data. In both cases, the posterior predictive
density can be stimulated as by-product of the MCMC algorithm, Seott (2002).

5 An Appiication to Financial Data

The propoesed model is applied to the exchange rate quarterly returns of the U.S. dol-
lar retative to the French franc, over the period 1973-111 to 1988-1, aiready analysed
in Engel and Hamilton (1990) and Otranto and Galle (2002) through a likelihood
ratio and a non-parametric Bayesian approach, respectively. While the approach in
Enge! and Hamilton (1990) failed to test the mode!l with two regimes against the
one with only one regime (more details are reported in Otranto and Gallo (2002)).
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in Otranto and Gallo (2002) the posterior probability for £ = 2 was found to be
slightly higher than that for & = 1. The choice of the data set is motivaled by the
existence of a benchmark for comparing the results.

For previously unspecified hyperparameters, we let: 8; = 1, Vi, j; §=10;
n=2q=72r =2 f =095k = 4/R? where R is the data range. All
the hyperparameters were chosen in a way that the priors on the parameters would
assign large probabilities to a large range of values. Some experimentations high-
light that the results are quite robust with respect to reasonable perturbaiions on the
choice of the hyperparameters. Models with a number of regimes up o £ = 5
were considered. Larger values for X would be unreasonable, given the short ime
series al hand. Trace plots of the sample parameter values versus iteration, as well
as of the sample posterior prebability of the number of regimes Fig. 2(b)), were
used 1o control for the stabilization of the simulation. A burn-in of 100,000 sweeps
seems sufficient for the convergence to occur. We performed 1,000,000 sweeps of
the MCMC atgorithm, We observed a quite high acceptance rate (=217%) for the RJ
move, due to the fact that the data set is small and, thus, the posterior distribution
of the parameters is not particularly picked, making the algorithm move easily over
different models (Fig. 2{2)). After the convergence, the algorithm provides with sta-
ble estimates of the posterior mode! probabilities, given in Fig. 2(b). As ia Otranto
and Gallo {2002), we get evidence in favor of the two regimes model, the mode of
the posterior probability being &k = 2.

Conditionally on k = 2, Fig. 3(b) shows the posterior probability of the U.5. ¢ol-
lar being in a regime of appreciation, with vertical lines representing the swilches
from one regime o the other. The posterior probability, as well as the switching
points, resemble closely the results obtained in Engel and Hamitton {199C). Fur-
thermore, the process seems to stay in the same regime for a while, 25 confirmed by
the estimated transition matrix

4 (0676 0324
0.350  0.650

showing higher probabilities to persist in the same regime compared to those of
switching to the other one (i.c.: the so called long swings of the U.S. dollar).

. 03 k
4 k=2
. K=1
: =3
°B 0z k=4
k=5
1} 5000 10000 o] 5000 10000

() (b}

Fig. 2 (a} Last 10,000 values of k. {b) Estimated posterior distribution of % as a function of
number of sweeps, plotied every 100th sweep



460 R. Castellano and L. Scacciy

Fig.3 (a) U.S. dollar/French franc exchange rue. (1) Estimated posterior probabiiity of the U.S,
doliar being in a appreciation regime 2$ a function of 7

6 Conclusions

In this paper Bayesian inference for HMMs with an unknown number of regimes
and its application to financial time series is illustrated. We considered 2 hierar-
chical model which aliows to make vague ¢ priori assumptions on the parameters.,
The analytically untractable joint posterior distribution of all the parameters and
the unknown number of regimes was simulated through MCMC methods and RJ
algorithm.

Future developments could encompass the design of RJ moves visiting a larger
set of models, in which some regimes may have equal variances but different
means or equal means but different variances. The approach can also be adapted
Lo any exiension of HMMs, such as time-varying transition probabilities, Markov

switching heteroskedasticity, multiple regime Smooth Transition or Threshold AR
models.
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