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for a Class of Stochastic Processes
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This article provides a solution of a generalized eigenvalue problem for integrated
processes of order 2 in a nonparametric framework. Our analysis focuses on a pair
of random matrices related to such integrated process. The matrices are constructed
considering some weight functions. Under asymptotic conditions on such weights,
convergence results in distribution are obtained and the generalized eigenvalue
problem is solved. Differential equations and stochastic calculus theory are used.

Keywords Asymptotic theory; Generalized eigenvalue problem; Nonparametric
analysis.

Mathematics Subject Classification 62E20; 62G20.

1. Introduction

Nonparametric approaches have been proposed recently to study integrated
processes of order one (Bierens, 1997; Breitung, 2002; García and Sansó, 2006).
The prominent case of system integrated of higher order is the one of systems
integrated of order two, I(2). The aim of this article is to provide a nonparametric
theoretical analysis of a multivariate integrated process of order two via asymptotic
solution of a generalized eigenvalue problem. Many multivariate techniques such
as principal component analysis (Boente et al., 2008; Cadima and Jolliffe, 1995;
Fujikoshi et al., 2007; Schott, 2006; Sun, 2000), correspondence analysis (Leeuw,
1982; Van de Velden and Neudecker, 2000), canonical correlation (Nielsen, 2001),
discriminant analysis (Bensmail and Celeux, 1996; Demira and Ozmehmetb, 2005),
and factor analysis (Forni et al., 2005) can be formulated as eigenvalue problems,
including generalized eigenvalue problems. In this article, the generalized eigenvalue
problem involves two random matrices that take into account the stationary and
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Nonparametric Asymptotic Results 2553

nonstationary properties of a p-variate integrated process of order 2, i.e.,

Yt = �−2�t = �1− L�−2�t� (1)

where p ∈ N, Yt = �Y 1
t � � � � � Y

p
t �, �t = ��1t � � � � � �

p
t � is a zero-mean stationary process,

L is the lag operator, i.e., L�t �= �t−1 and � �= 1− L. If Yt ∼ I�2�, then Yt − Y0 ∼
I�2�. Without loss of generality, we assume that Y0 = 0.

The random matrices are weighted with functions belonging to certain
functional spaces. Under some regularity conditions on the weights, we obtain the
convergence of the ordered generalized eigenvalues to random numbers independent
on the integrated process. Such random quantities are the ordered solution of a
nonparametric generalized eigenvalue problem.

The article is organized as follows. Section 2 describes the data generating
process. In Sec. 3, the weight functions and the random matrices are defined. In
Sec. 4, convergence results for the generalized eigenvalue problem are derived.
Section 5 concludes.

2. Data Generating Process

If Yt in (1) satisfies the hypotheses of the Wold Decomposition Theorem, then there
exists a p-squared matrix of lag polynomials in the lag operator L such that

�t =
�∑
j=0

Cjvt−j =� C�L�vt� t = 1� � � � � n� (2)

where vt is a p-variate stationary white noise process.

Assumption 1. The process �t can be written as in (2), where vt are i.i.d. zero-mean
p-variate gaussian variables with variance equals to the identity matrix of order p,
Ip, and there exist C1�L� and C2�L� p-squared matrices of lag polynomials in the lag
operator L such that all the roots of detC1�L� are outside the complex unit circle
and C�L� = C1�L�

−1C2�L�.
The lag polynomial C�L�− C�1� attains value zero at L = 1 with algebraic

multiplicity equals to 2. Thus, there exists a lag polynomial

D�L� =
�∑
k=0

DkL
k

such that C�L�− C�1� = �1− L�2D�L�. Therefore, we can write

�t = C�L�vt = C�1�vt + �C�L�− C�1�	vt = C�1�vt +D�L��1− L�2vt� (3)

Let us define wt �= D�L�vt. Then, substituting wt into (3), we get

�t = C�1�vt + �1− L�2wt� (4)

(4) implies that, given Yt ∼ I�2�, we can write recursively

�Yt = �Yt−1 + �t = �Y0 + �1− L�wt − w0 + C�1�
t∑

j=1

vj (5)

where rank�C�1�� = p− r < p.
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2554 Cerqueti and Costantini

Remark 2.1. By Assumption 1, we have that C�L�vt and D�L�vt are well-defined
stationary processes.

Assumption 2. Let us consider Rr the matrix of the eigenvectors of C�1�C�1�T

corresponding to the r zero eigenvalues. Then the matrix RT
r D�1�D�1�TRr is non

singular.

Remark 2.2. Assumption 2 implies that Yt cannot be integrated of order d̄, with
d̄ > 2. In fact, if there exists d̄ > 2 such that Yt ∼ I�d̄�, then the lag polynomial
D�L� admits a unit root with algebraic multiplicity d̄ − 2, and so D�1� is singular.
Therefore RT

r D�1�D�1�TRr is singular, and Assumption 2 does not hold.

3. Weighted Random Matrices

In order to address the solution of the generalized eigenvalues problem, a couple of
random matrices are constructed. These matrices are associated with the stationary
and nonstationary part of the process I�2�.

If Yt satisfies (1), then �kYt is a non stationary process, for k = 0� 1 and �2Yt is
a stationary process.

The random matrices are assumed to be dependent on an integer number m ≥ p.
Let us fix k = 1� � � � � m. We define

Am �=
m∑

k=1

an�ka
T
n�k
 (6)

Bm �=
m∑

k=1

bn�kb
T
n�k� (7)

where

an�k �=
MY��Y

n /
√
n√∫ 1

0

∫ 1
0 Fk�x�Fk�y�min�x� y�dx dy


 (8)

bn�k �=
√
nM�2Y

n√∫ 1
0 Fk�x�

2dx
� (9)

with

MY��Y
n = 1

n

n∑
t=1

[(
Gk�t/n�+

Hk�t/n�

n3

)
· Yt

]
+ 1

n

n∑
t=1

Fk�t/n��Yt
 (10)

M�2Y
n = 1

n

n∑
t=1

Fk�t/n��
2Yt� (11)

where

Fk � �0� 1	 → R� Fk ∈ C1�0� 1	


Gk � �0� 1	 → R


Hk � �0� 1	 → R�
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Nonparametric Asymptotic Results 2555

The weights Fk, Gk, and Hk can be chosen in order to obtain convergence results for
the random matrices Am and Bm. We give the following definition.

Definition 3.1. Let us fix m ∈ N, k = 1� � � � m. Consider the following conditions:

lim
n→+� n · max

1≤t≤n

∣∣∣∣ t�t + 1�
2

Gk�t/n�− tFk�t/n�

∣∣∣∣ = 0
 (12)

lim
n→+�

1

n
9
2

n∑
t=1

t�t + 1�Hk�t/n� = 0
 (13)

lim
n→+�

1√
n

n∑
t=1

Fk�t/n� = 0
 (14)

lim
n→+�

1

n
√
n

n∑
t=1

tFk�t/n� = 0
 (15)

∫ 1

0

∫ 1

0
Fi�x�Fj�y�min�x� y�dx dy = 0� i �= j
 (16)

∫ 1

0
Fi�x�

∫ x

0
Fj�y�dx dy = 0� i �= j
 (17)

∫ 1

0
Fi�x�Fj�x�dx = 0� i �= j� (18)

The functional classes �m, �m, and �m are:

�m �= {
Fk � �0� 1	 → R� Fk ∈ C1�0� 1� 	 (14)–(18) hold� k = 1 � � � � m

}

 (19)

�m �=
{
Gk � �0� 1	 → R 	 (12) holds� k = 1 � � � � m

}

 (20)

�m �= {
Hk � �0� 1	 → R 	 (13) holds� k = 1 � � � � m

}
� (21)

Bierens (1997) showed that the functional class �m is not empty. He pointed out
that, if one defines


Fk � R → R

such that


Fk�x� = cos�2k
x�� (22)

and taking the restriction

Fk �= 
Fk	�0�1	�

then Fk ∈ �m.
The functional classes �m and �m are also not empty. In fact, the following

result holds.
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2556 Cerqueti and Costantini

Proposition 3.1. Fix k = 1� � � � � m. Define the following subset of R:

A �= ⋃
n∈N

{
x ∈ R 	 x = −1

n

}
�

and the functions


Gk � R− A → R�

� � N → R�

such that


Gk�x� =
k
x + 1
nx + 1

+ ��n�� (23)

Moreover, define


Hk � R → R

such that


Hk�x� =
N∑
j=1

ajx
�j � (24)

for each N ∈ N, aj� a� �j ∈ R, ∀ j ∈ �1� � � � � N�.
Assume that:

• The function

f � R− �−1� → R

such that

f�t� �= t�t + 1�
2


Gk�t/n�− t cos
(
2k
t
n

)
(25)

is increasing with respect to t;
• The function � satisfies the following condition:

n ·max
{∣∣∣∣12
Gk�1/n�− cos

(
2k

n

)∣∣∣∣�
∣∣∣∣n�n+ 1�

2

Gk�1�− n

∣∣∣∣
}
= o

(
1
n

)
� (26)

Then,

Gk �= 
Gk	�0�1	� Hk �= 
Hk	�0�1	
belong to �m and �m, respectively.

Proof. A direct computation gives that Hk ∈ �m. So we have to prove that Gk ∈ �m.
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Nonparametric Asymptotic Results 2557

Since Fk defined in (22) belongs to �m (see Bierens, 1997), we can replace in (12)
the functions Fk with (22). We get

lim
n→+� n · max

1≤t≤n

∣∣∣∣ t�t + 1�
2

Gk�t/n�− t cos
(
2k
t
n

)∣∣∣∣ = 0� (27)

Then there exists � > 0 such that

max
1≤t≤n

∣∣∣∣ t�t + 1�
2

Gk�t/n�− t cos
(
2k
t
n

)∣∣∣∣ ∼ 1
n1+�

� (28)

Let us consider f defined as in (25). Since f is increasing, a simple estimate gives

f ′�t� �= 2t + 1
2

Gk�t/n�+
t�t + 1�

2n
�

�t
Gk�t/n�− cos

(
2k
t
n

)
+ 2k
t

n
sin

(
2k
t
n

)

>
2t + 1

2
Gk�t/n�+

t�t + 1�
2n

�

�t
Gk�t/n�− 1− 2k
t

n
≥ 0�

Thus, the weight functions Gk can be obtained by solving the differential equation

2t + 1
2

Gk�t/n�+
t�t + 1�

2n
�

�t
Gk�t/n�− 1− 2k
t

n
= 0� (29)

The solution of (29) is

Gk�t/n� =
1
n
· k
�t/n�+ 1

t/n+ 1/n
+ ��n��

where � is independent on t. Due to the fact that f is increasing with respect to t,
the condition (26) implies that (12) holds. �

4. Generalized Eigenvalues and Nonparametric Results

In this section, the generalized eigenvalue problem is solved. Consider a p-variate
standard Wiener process W and denote with fk the derivative of Fk. We define the
following p-variate standard normally distributed random vectors:

Xk �=
∫ 1
0 Fk�x�W�x�dx( ∫ 1

0

∫ 1
0 Fk�x�Fk�y�min�x� y�dx dy

) 1
2

�

Yk �=
Fk�1�W�1�− ∫ 1

0 fk�x�W�x�dx∫ 1
0 Fk�x�

2dx
�

X∗
k �= (

RT
p−rC�1�C�1�

TRp−r

) 1
2RT

p−rC�1�Xk ∼ Np−r �0� Ip−r ��

Y ∗
k �= (

RT
p−rC�1�C�1�

TRp−r

) 1
2RT

p−rC�1�Yk�

Y ∗∗
k �= �RT

r D�1�D�1�TRr�
− 1

2RT
r D�1�Yk ∼ Nr�0� Ir��
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2558 Cerqueti and Costantini

Furthermore, we construct the matrix Vr�m as

Vr�m �= �RT
r D�1�D�1�TRr�

1
2V ∗

r�m�R
T
r D�1�D�1�TRr�

1
2 �

where

V ∗
r�m =

( m∑
k=1

�2kY
∗∗
k Y ∗∗T

k

)
−

( m∑
k=1

�kY
∗∗
k X∗T

k

)( m∑
k=1

X∗
kX

∗T
k

)−1( m∑
k=1

�kX
∗
kY

∗∗T
k

)
�

Theorem 4.1. Assume that Fk ∈ �m, Gk ∈ �m, Hk ∈ �m, and Assumptions 1 and 2 hold.

• Let us consider �̂1�m ≥ · · · ≥ �̂p�m the ordered solutions of the generalized
eigenvalue problem

det
[
Am − ��Bm + n−2A−1

m �
] = 0� (30)

and let us consider �1�m ≥ · · · ≥ �p−r�m the ordered solutions of the generalized
eigenvalue problem

det
[ M∑

k=1

X∗
kX

∗T
k − �

M∑
k=1

Y ∗
k Y

∗T
k

]
= 0� (31)

where the X∗
i ’s and Y ∗

j ’s are i.i.d. random variables following a Np−r �0� Ip−r �

distribution.
Then we have the following convergence in distribution:

��̂1�m� � � � � �̂p�m� → ��1�m� � � � � �p−r�m� 0� � � � � 0��

• Let us consider �∗1�m ≥ · · · ≥ �∗r�m the ordered solutions of the generalized
eigenvalue problem

det
[
V ∗
r�m − ��RT

r D�1�D�1�TRr�
−1
] = 0� (32)

We have the following convergence in distribution:

n2��̂p−r+1�m� � � � � �̂p�m� → ��∗21�m� � � � � �
∗2
r�m��

Proof. Due to Anderson et al. (1983), then Lemmas 1, 2, and 4 in Bierens (1997),
it is sufficient to prove that

MY��Y
n√
n

→ C�1�
∫ 1

0
Fk�x�W�x�dx� as n → +�� (33)

By definition of data generating process, we can write

MY��Y
n = 1

n

n∑
t=1

(
Gk�t/n�+

Hk�t/n�

n3

)[ t−1∑
j=0

�Yt−j

]
+ 1

n

n∑
t=1

Fk�t/n��Yt� (34)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
à
 
d
e
g
l
i
 
S
t
u
d
i
 
d
i
 
R
o
m
a
 
L
a
 
S
a
p
i
e
n
z
a
]
 
A
t
:
 
1
2
:
0
8
 
7
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



Nonparametric Asymptotic Results 2559

We get recursively

t−1∑
j=0

�Yt−j =
t−1∑
j=0

�j + 1��t−j ∼ N�0� �∗�� (35)

where

�∗ �=



∑t−1

j=0�j + 1�2�2
1 0 · · · 0

0
∑t−1

j=0�j + 1�2�2
2 · · · 0

· · · · · · · · · · · ·
0 · · · 0

∑t−1
j=0�j + 1�2�2

p




By (35) and (36) we can write

MY��Y
n = 1

n

n∑
t=1

(
Gk�t/n�+

Hk�t/n�

n3

)[ t−1∑
j=0

�j + 1��t−j

]
+ 1

n

n∑
t=1

Fk�t/n��Yt� (36)

Thus, (36) can be rewritten. Using the definition of the p-variate normal random
variable �t and the i.i.d. property, we get

Mn
Y��Y

√
n

= �1
n4
√
n

n∑
t=1

Hk�t/n�
t�t + 1�

2
+ �1

n
√
n
·
[ n∑

t=1

(
Gk�t/n�

t�t + 1�
2

+ tFk�t/n�

)]

(37)

By hypothesis (13), the first addend in the right-hand term of (37) vanishes as
n → +�.

Moreover, since Gk ∈ �m it results, for each t = 1� � � � � n,

Gk�t/n�
t�t + 1�

2
∼ tFk�t/n�� (38)

as n → +�.
Therefore, since Fk ∈ �m, by (38) and Theorems 1 and 2 in Bierens (1997), we

get the thesis. �

5. Conclusions

This article provides a nonparametric analysis of multivariate integrated processes
of order two via the asymptotic behavior of a generalized eigenvalue problem. Two
involved random matrices associated with the stationary and nonstationary parts of
the process are constructed. To obtain asymptotic results, some weights regarding
the matrices are considered. The ordered generalized eigenvalues converge to some
random numbers. Such random quantities are the ordered solution of a generalized
eigenvalue problem independent on the data generating process.
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