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Abstract

In many situations, the distribution of the error terms of a linear regression model departs
signi4cantly from normality. It is shown, through a simulation study, that an e5ective strategy
to deal with these situations is 4tting a regression model based on the assumption that the error
terms follow a mixture of normal distributions. The main advantage, with respect to the usual
approach based on the least-squares method is a greater precision of the parameter estimates
and con4dence intervals. For the parameter estimation we make use of the EM algorithm, while
con4dence intervals are constructed through a bootstrap method.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A basic assumption of the linear regression model is that the error terms have a
normal distribution; most of the inferential procedures currently used are based on
this assumption. A wide literature now exists on the detection of violations of this
assumption on the basis the ordinary least-squares (OLS) residuals. The usual technique
is based on the normal probability plot that allows us to compare the observed residuals
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with those expected under normality; a more formal test, known as correlation test
for normality, may be carried out through the Pearson correlation coeEcient between
these residuals (Blom, 1958; Looney and Gulledge, 1985). Other formal tests have
been set up; most of them are tailored to the detection of skewness of the error terms,
which naturally arises when measurements are based on extremes. Tests of this type are
those of Anscombe (1961), based on the third moment of the OLS residuals, and Boos
(1987); other tests have been proposed by Huang and Bolch (1974) and Quesenberry
(1986). Obviously, departures from normality of the error terms may have negative ef-
fects on the inferential procedures. Cox and Hinkley (1968), for instance, showed that
the variance of the OLS estimator is much larger than that of the maximum-likelihood
estimator (MLE) when the error terms follow the extreme value distribution. In this
situation, we also have an overestimation of the standard errors of the parameter es-
timates that leads to tests with signi4cance level larger than the nominal one and to
wider con4dence intervals than necessary; a similar problem a5ects prediction intervals
(see also, Boos, 1987, Section 1). The literature on remedial measures for departure
from normality is not so developed as that on its detection, partially because, with
large samples, the usual inferential procedures are approximately valid. A well-known
method for dealing with non-normal errors is based on transformations of the response
variables (Box and Cox, 1964). Also the Huber M-estimator (Huber, 1981) may be
e5ectively used in some situations (Boos, 1987).

In this paper, we illustrate the use of mixtures as a remedial measure for non-normal
errors. According to our approach, whenever we detect departure from normality, we
will 4t a linear regression model with the same structure as the original one, apart from
the assumption that the error terms follow a mixture of normal distributions with a 4nite
number of components. To detect departure from normality, we follow the approach of
Looney and Gulledge (1985) based on the correlation coeEcient between observed and
expected residuals under normality (see also, Blom, 1958; Gan and Koehler, 1990; Gan
et al., 1991). Note that the use of mixture models in the linear regression context is
well-known, even if with other aims: to deal with two di5erent regression functions,
the so-called switching regression (see, for instance, Quandt and Ramsey, 1978), and
to deal with outliers (Aitkin and Wilson, 1980). In this paper, instead, mixtures are
exploited as a convenient semiparametric method, which lies between parametric mod-
els and kernel density estimators, to model the unknown distributional shape of the
errors. In this perspective, the choice of a mixture of normal distributions seems to
be a natural one, given its tractability and Jexibility. An example of the use of nor-
mal mixtures to represent a wide variety of density shapes can be found in Marron
and Wand (1992).

The paper is organized as follows. In Section 2 we introduce some preliminary no-
tation and describe the correlation test for normality proposed by Blom (1958) and
extensively investigated by Looney and Gulledge (1985). Then, in Section 3, we il-
lustrate the proposed approach, based on a mixture model, to deal with non-normal
errors and the estimation of the parameters of such a model through the EM algo-
rithm. Finally, in Section 4, we illustrate the results of a simulation study that shows
the advantages of the proposed approach.
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2. Notation and preliminary results

The linear regression model is based on the assumption

Yi = �i + �i; �i = �0 +
p∑

j=1

xij�j; i = 1; : : : ; n; (1)

where Yi represents the response variable for the ith sample unit, xij is the ith obser-
vation of the jth predictor variable and �j’s are regression parameters of the model.
Finally, �i is the error term corresponding to the ith observation; under the assumption
of normality, we have that �i; i = 1; : : : ; n; are i.i.d. N (0; 
2).

The usual approach for detecting lack of normality of the �i’s is based on the
normal probability plot. A common method to set up this plot consists in the following
steps:

(1) compute the residuals of the regression, e1; : : : ; en, where

ei = yi − �̃0 −
p∑

j=1

xij�̃j;

with yi denoting the observed value of Yi and �̃j the OLS estimate of �j;
(2) sort the residuals e1; : : : ; en in ascending order and let e(i) be the ith smallest

residual;
(3) plot the points of coordinates (ê (i); e(i)), i = 1; : : : ; n, where

ê (i) =
√
s2�−1

(
i − 3=8
n + 1=4

)

is the expected value of e(i) under the assumption of normality,

s2 =
1

n − p − 1

n∑
i=1

e2
i

is the unbiased estimate of 
2 and �−1 denotes the inverse of the standard normal
distribution.

It is clear that the closer the points are to a straight line, the more reliable the assump-
tion of normality. A more formal assessment is based on the use of the correlation
index between the observed and the expected residuals, namely

r =
∑n

i=1 e(i)ê (i)√∑n
i=1 e2

(i)

∑n
i=1 ê2

(i)

:

A low level of this index indicates departure from normality. Critical values for r,
which depend only on n, may be found through a Monte Carlo simulation. These have
been tabulated, for several values of n, by Looney and Gulledge (1985).
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3. The proposed approach

When, for a given sample, the p-value of the correlation test illustrated in the
previous section is less than a certain level, say 0:05, we propose to estimate a model
based on the same regression function as the original one and on the assumption that
the error terms follow a mixture of normal distributions. In a previous version of this
paper we restricted the attention on location mixtures, for which all the components
have the same variance. In this way, however, the paper naturally focused on the
skewness of the errors as a departure from normality. Following the suggestion of a
reviewer, we now consider a more general framework in which the components of
the mixture are not constrained to have the same variance (location-scale mixtures).
These normal mixtures with heteroscedastic components are expected to perform better
than those with homoscedastic components when the error terms have a leptokurtic
distribution. More precisely, the model considered is based on assumptions (1) and

�i ∼
k∑

h=1

�hN (�h; �2
h); (2)

where �h’s are weights adding to 1 and the �h’s satisfy the identi4ability constraint∑k
h=1 �h�h = 0. In the following, we illustrate how maximum-likelihood estimation of

the parameters of this model may be carried out through the well-known EM algo-
rithm (see, Dempster et al., 1977). For a gentle tutorial on the EM algorithm and its
application to parameter estimation for mixture models see also Bilmes (1998).

First of all consider that the density of the ith observation of Y , yi, is
k∑

h=1

�h�(yi; �ih; �2
h); �ih = �h + �0 +

p∑
j=1

xij�j;

where �(yi; �ih; �2
h) denotes the density at yi of the normal distribution N (�ih; �2

h). So,
the log-likelihood of the model at issue is given by

l =
n∑

i=1

log

[
k∑

h=1

�h�(yi; �ih; �2
h)

]
:

To maximize l with respect to the parameters of the model we proceed through the EM
algorithm, normally used in the presence of missing data. Let zih be a binary variable
equal to 1 when the ith observation has been generated from the hth component and
to 0 otherwise. Obviously, the variables zih’s are unknown, but, if they were known,
the so-called complete log-likelihood would be, up to a constant factor,

lc =
n∑

i=1

k∑
h=1

zih[log �h + log�(yi; �ih; �2
h)] = lc1 + lc2; (3)

where

lc1 =
k∑

h=1

z·hlog �h and lc2 = −1
2

k∑
h=1

z·hlog �2
h − 1

2

n∑
i=1

k∑
h=1

zih
(yi − �ih)2

�2
h

;
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with z·h =
∑n

i=1 zih. To maximize the 4rst component simply let �h equal to �̂h = z·h=n,
h = 1; : : : ; k. Instead, to show how lc2 can be maximized, it is convenient to express
such a function in matrix notation; so, let y = (y1 · · ·yn)′ be the vector of observed
data and �=(�′ �′)′ be the k +p-dimensional vector of identi4able parameters, where

� = (�0 + �1 · · · �0 + �k)′ and � = (�1 · · · �p)′:

Moreover, let zh = (z1h · · · znh)′ and �h = (�1h · · · �nh)′ and note that the latter may be
expressed as �h = Xh�, where Xh = (Oh X), Oh is a matrix of dimension n × k with
all the elements equal to 0 apart from those of column h which are equal to 1 and X
is the n × p matrix with entries xij; consequently, we have

lc2 = −1
2

k∑
h=1

z·hlog �2
h − 1

2

k∑
h=1

1
�2
h
(y− Xh�)′diag(zh)(y− Xh�):

The 4rst derivative of this function with respect to � is equal to

@lc2
@�

=
k∑

h=1

1
�2
h
X ′

h diag(zh)(y− Xh�);

which, for 4xed 	2 = (�2
1 · · · �2

k)
′, is solved by

�̂ =M−1Ny;

where

M =
k∑

h=1

1
�2
h
X ′

h diag(zh)Xh and N =
k∑

h=1

1
�2
h
X ′

h diag(zh): (4)

From �̂ we directly obtain �̂ and �̂; we may also obtain �̂0 as 1
k

∑k
h=1 �̂h�̂h and, for

h = 1; : : : ; k, �̂h as �̂h − �̂0. Finally, for 4xed �, the derivative of lc2 with respect to 	2

is solved by 	̂2 whose elements are

�̂2
h =

1
z·h

(y− Xh�)′ diag(zh)(y− Xh�); h = 1; : : : ; k: (5)

The EM algorithm consists in iterating the following two steps until convergence:

(E) On the basis of the current estimate of the parameters, compute the expected value
of the complete log-likelihood given the observed data, E(lc|y). In practice, this
consists in substituting to any zih in (3) its conditional expected value

pih = E(zih|y) =
�h�(yi; �ih; �2

h)∑k
g=1 �g�(yi; �ig; �2

g)
:

(M) Maximize E(lc|y) with respect to the parameters of the model as follows:
(i) for any h update the estimate of �h with 1

n

∑n
i=1 pih;

(ii) iteratively update, until convergence, the estimates of � and 	2 through,
respectively, (4) and (5) where any zih has been substituted with pih.
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A well-known problem is that the likelihood of a mixture of normal distributions with
heteroscedastic components is unbounded. To avoid this problem, we constrained the
variances �2

h so that the ratio between the largest and the smallest variance is less than a
certain value, say 100 as in the simulation presented in the next section. Note however,
that the algorithm above usually converges to a local maximum of the likelihood and so
this bound is seldom reached in practice; this reduces the problem of the arbitrariness
of the bound.

Since the log-likelihood may have more than one local maximum, a crucial point
concerns the choice of the starting values of the EM algorithm. We suggest the follow-
ing strategy. For � simply use the corresponding OLS estimate. For � use the vector
with elements �̃0 + �̃h, h = 1; : : : ; k, where �̃0 denotes the OLS estimate of �0 and
�̃h the estimate of �h obtained by 4tting the mixture model (2) to the OLS residu-
als, which also provides the initial values of the parameters �2

h and �h, h = 1; : : : ; k.
This may be performed by using an EM algorithm similar to the one described in the
previous section. We suggest to initialize this algorithm through a preliminary hier-
archical clustering of the residuals based on the complete linkage distance measure
between clusters (see Gordon, 1999, Section 4.2.2).

4. Simulation study

To assess the advantages of the proposed approach, we carried out a simulation study
in which, apart from the standard normal, the standardized versions of the following
distributions are considered for the error terms:

Distribution Density function Skewness Kurtosis
f(�)  1  2

Extreme value exp[� − exp(−�)] 1.14 2.40
Gamma (� = 2; � = 1) � exp(−�) 1.41 3.00

Lognormal (� = 0; 
2 = 1)
1

�
√

2�
exp{−[log(�)]2=2} 6.18 110.94

t (5 d.f.)
2

"(2:5)
√

5�
(1 + �2=5)−3 0.00 6.00

Mixture 0:5�(�; −1:75; 1) + 0:5�(�; 1:75; 1) 0.00 −1.14

We also considered two di5erent regression functions. The 4rst one, indicated hereafter
by R1, involves two non-random predictors (p = 2) de4ned as xi1 = ti and xi2 = t2i ,
i = 1; : : : ; n, where ti = (2i − 1)=n − 1. The true values of the parameters are �0 = −1,
�1=2 and �2=3. In the second case, instead, we have only one random predictor since
the regression function, which will be referred to as R2, is based on an autoregressive
structure of order one (AR1). The true values of the parameters are �0=1 and �1=0:95.
In summary, we have

R1: Yi = −1 + 2xi1 + 3xi2 + �i;

R2: Yi = 1 + 0:95Yi−1 + �i:
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Table 1
Power of the test of Looney and Gulledge (1985) for regression function R1

Nominal level Normal Extreme value Gamma
of signi4cance

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

0.50 0.498 0.518 0.502 0.782 0.924 0.996 0.886 0.992 1.000
0.25 0.257 0.261 0.253 0.582 0.841 0.981 0.760 0.975 1.000
0.10 0.112 0.101 0.112 0.396 0.725 0.954 0.592 0.922 0.999
0.05 0.059 0.043 0.067 0.310 0.640 0.907 0.477 0.864 0.999
0.01 0.015 0.016 0.014 0.155 0.408 0.783 0.267 0.660 0.983

Nominal level Lognormal t Mixture
of signi4cance

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

0.50 0.987 1.000 1.000 0.688 0.755 0.918 0.714 0.909 0.995
0.25 0.970 1.000 1.000 0.470 0.605 0.827 0.461 0.748 0.984
0.10 0.933 0.999 1.000 0.305 0.464 0.745 0.193 0.499 0.939
0.05 0.888 0.995 1.000 0.217 0.359 0.682 0.085 0.328 0.857
0.01 0.761 0.993 1.000 0.102 0.206 0.491 0.007 0.081 0.529

Table 2
Power of the test of Looney and Gulledge (1985) for regression function R2

Nominal level Normal Extreme value Gamma
of signi4cance

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

0.50 0.495 0.528 0.479 0.764 0.955 0.999 0.914 0.994 1.000
0.25 0.262 0.252 0.230 0.617 0.870 0.988 0.795 0.978 1.000
0.10 0.102 0.101 0.091 0.442 0.742 0.961 0.637 0.935 1.000
0.05 0.061 0.046 0.042 0.347 0.625 0.931 0.529 0.887 0.999
0.01 0.010 0.012 0.010 0.197 0.411 0.807 0.308 0.749 0.984

Nominal level Lognormal t Mixture
of signi4cance

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

0.50 0.996 1.000 1.000 0.669 0.770 0.900 0.782 0.942 0.999
0.25 0.982 1.000 1.000 0.478 0.616 0.816 0.501 0.802 0.990
0.10 0.951 1.000 1.000 0.333 0.495 0.695 0.246 0.562 0.953
0.05 0.921 0.999 1.000 0.246 0.401 0.618 0.119 0.394 0.899
0.01 0.825 0.994 1.000 0.134 0.234 0.459 0.014 0.108 0.607

For each distribution of the error terms and each regression function, we generated
1000 samples of three di5erent sizes (n = 25; 50; 100) from the resulting model. For
any sample, the hypothesis of normality of the error terms has been assessed through
the correlation test described in Section 2. The power of such a test (i.e. the relative
frequency of times that the null hypothesis is rejected) is shown in Tables 1 and 2 for
several nominal levels of signi4cance.
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Table 3
Comparison between OLS, ML and proposed estimator of the parameters for the regression function R1

Normal Extreme value Gamma

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Bias −0.0133 −0.0187 0.0076 −0.0115 0.0090 −0.0014 −0.0174 −0.0018 −0.0015
MSE 0.0890 0.0462 0.0221 0.0914 0.0408 0.0212 0.0910 0.0437 0.0215

�̂1 Bias 0.0259 0.0013 −0.0078 −0.0021 −0.0073 −0.0013 0.0035 0.0120 −0.0018
MSE 0.1203 0.0594 0.0281 0.1201 0.0576 0.0297 0.1191 0.0598 0.0320

�̂2 Bias 0.0428 0.0221 −0.0120 0.0326 −0.0282 0.0030 0.0163 0.0122 0.0018
MSE 0.4330 0.2178 0.1119 0.4727 0.2069 0.1040 0.4478 0.2161 0.1032

MLE �̂0 Bias −0.0133 −0.0187 0.0076 −0.0473 −0.0095 −0.0100 −0.0599 −0.0178 −0.0139
MSE 0.0890 0.0462 0.0221 0.0725 0.0324 0.0168 0.0631 0.0282 0.0134

�̂1 Bias 0.0259 0.0013 −0.0078 −0.0011 −0.0002 0.0028 0.0072 0.0044 0.0011
MSE 0.1203 0.0594 0.0281 0.0903 0.0376 0.0194 0.0502 0.0181 0.0076

�̂2 Bias 0.0428 0.0221 −0.0120 0.1125 0.0146 0.0229 0.1438 0.0602 0.0389
MSE 0.4330 0.2178 0.1119 0.3315 0.1440 0.0654 0.2074 0.0803 0.0319

Mixture �̂0 Bias −0.0143 −0.0184 0.0074 −0.0211 0.0038 −0.0058 −0.0328 −0.0042 −0.0039
(k = 2) MSE 0.0912 0.0468 0.0226 0.0885 0.0390 0.0197 0.0880 0.0394 0.0173

�̂1 Bias 0.0231 0.0009 −0.0079 −0.0025 −0.0041 0.0015 −0.0001 0.0052 0.0042
MSE 0.1211 0.0601 0.0286 0.1186 0.0551 0.0239 0.1081 0.0408 0.0164

�̂2 Bias 0.0458 0.0211 −0.0111 0.0613 −0.0127 0.0163 0.0624 0.0195 0.0091
MSE 0.4519 0.2260 0.1143 0.4600 0.1978 0.0875 0.4231 0.1647 0.0677

Mixture �̂0 Bias −0.0141 −0.0176 0.0078 −0.0231 0.0073 −0.0065 −0.0297 −0.0023 −0.0070
(k = 3) MSE 0.0909 0.0465 0.0229 0.0912 0.0412 0.0204 0.0878 0.0389 0.0177

�̂1 Bias 0.0231 0.0027 −0.0071 −0.0011 −0.0023 0.0042 −0.0069 −0.0015 0.0026
MSE 0.1218 0.0613 0.0291 0.1232 0.0616 0.0268 0.1114 0.0450 0.0155

�̂2 Bias 0.0452 0.0185 −0.0125 0.0674 −0.0230 0.0184 0.0530 0.0138 0.0183
MSE 0.4511 0.2248 0.1182 0.4851 0.2164 0.0947 0.4251 0.1693 0.0672
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Lognormal t Mixture

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Bias −0.0121 0.0069 −0.0044 0.0081 −0.0025 −0.0002 0.0070 −0.0028 0.0028
MSE 0.0746 0.0425 0.0211 0.0851 0.0483 0.0215 0.0843 0.0443 0.0239

�̂1 Bias −0.0062 0.0010 0.0023 −0.0064 −0.0044 0.0029 −0.0102 −0.0026 −0.0016
MSE 0.0873 0.0581 0.0261 0.1207 0.0586 0.0297 0.1099 0.0595 0.0310

�̂2 Bias 0.0133 −0.0045 −0.0010 −0.0142 0.0111 −0.0105 −0.0218 0.0022 −0.0077
MSE 0.3683 0.2198 0.0988 0.4416 0.2340 0.1046 0.4572 0.2182 0.1143

MLE �̂0 Bias −0.0613 −0.0297 −0.0207 0.0032 0.0006 −0.0026 0.0004 −0.0021 −0.0002
MSE 0.0309 0.0144 0.0070 0.0731 0.0388 0.0176 0.0447 0.0184 0.0090

�̂1 Bias 0.0002 −0.0016 0.0015 −0.0136 −0.0027 0.0025 −0.0053 −0.0009 −0.0010
MSE 0.0070 0.0025 0.0008 0.1070 0.0514 0.0251 0.0805 0.0302 0.0128

�̂2 Bias 0.0593 0.0275 0.0141 −0.0041 0.0047 −0.0021 −0.0038 0.0042 −0.0014
MSE 0.0336 0.0108 0.0033 0.3904 0.1944 0.0869 0.3251 0.1165 0.0501

Mixture �̂0 Bias −0.0184 0.0039 −0.0042 0.0082 −0.0006 −0.0009 0.0062 −0.0008 0.0046
(k = 2) MSE 0.0491 0.0263 0.0124 0.0840 0.0465 0.0213 0.0851 0.0421 0.0193

�̂1 Bias 0.0062 −0.0016 0.0008 −0.0095 −0.0014 0.0030 −0.0106 −0.0025 0.0000
MSE 0.0359 0.0157 0.0063 0.1206 0.0559 0.0281 0.1108 0.0558 0.0188

�̂2 Bias 0.0321 0.0042 −0.0015 −0.0144 0.0053 −0.0085 −0.0194 −0.0039 −0.0131
MSE 0.1451 0.0564 0.0237 0.4314 0.2251 0.1010 0.4603 0.2033 0.0756

Mixture �̂0 Bias −0.0222 0.0019 −0.0056 0.0078 −0.0019 −0.0035 0.0058 0.0006 0.0053
(k = 3) MSE 0.0475 0.0232 0.0109 0.0866 0.0483 0.0225 0.0857 0.0430 0.0201

�̂1 Bias 0.0067 −0.0009 0.0017 −0.0050 −0.0010 0.0003 −0.0120 0.0008 −0.0018
MSE 0.0360 0.0078 0.0032 0.1260 0.0620 0.0302 0.1116 0.0575 0.0227

�̂2 Bias 0.0438 0.0103 0.0027 −0.0135 0.0091 −0.0008 −0.0184 −0.0080 −0.0151
MSE 0.1444 0.0309 0.0125 0.4470 0.2418 0.1073 0.4640 0.2127 0.0858
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Table 4
Comparison between OLS, ML and proposed estimator of the parameters for the regression function R2

Normal Extreme value Gamma

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Bias 0.2617 0.2015 0.1756 0.2451 0.2144 0.1668 0.2374 0.1780 0.1951
MSE 0.3010 0.1905 0.1312 0.3670 0.2248 0.1667 0.3357 0.1927 0.1672

�̂1 Bias −0.0298 −0.0157 −0.0109 −0.0241 −0.0151 −0.0099 −0.0247 −0.0129 −0.0120
MSE 0.0040 0.0011 0.0005 0.0038 0.0012 0.0006 0.0036 0.0010 0.0006

MLE �̂0 Bias 0.2617 0.2015 0.1756 0.1742 0.1415 0.1204 0.1139 0.0832 0.0941
MSE 0.3010 0.1905 0.1312 0.2564 0.1340 0.1032 0.1677 0.0709 0.0547

�̂1 Bias −0.0298 −0.0157 −0.0109 −0.0175 −0.0100 −0.0073 −0.0121 −0.0061 −0.0058
MSE 0.0040 0.0011 0.0005 0.0027 0.0007 0.0003 0.0015 0.0003 0.0002

Mixture �̂0 Bias 0.2599 0.1999 0.1757 0.2269 0.1862 0.1285 0.2017 0.1245 0.1295
(k = 2) MSE 0.3029 0.1910 0.1321 0.3466 0.1942 0.1166 0.3016 0.1416 0.0971

�̂1 Bias −0.0296 −0.0156 −0.0110 −0.0224 −0.0131 −0.0077 −0.0211 −0.0090 −0.0080
MSE 0.0040 0.0011 0.0005 0.0036 0.0010 0.0004 0.0032 0.0007 0.0003

Mixture �̂0 Bias 0.2576 0.1972 0.1770 0.2278 0.1736 0.1172 0.2041 0.1145 0.1102
(k = 3) MSE 0.3028 0.1888 0.1327 0.3585 0.1994 0.1235 0.3039 0.1397 0.0908

�̂1 Bias −0.0293 −0.0154 −0.0110 −0.0226 −0.0121 −0.0070 −0.0213 −0.0083 −0.0068
MSE 0.0040 0.0011 0.0005 0.0038 0.0011 0.0004 0.0032 0.0007 0.0003
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Lognormal t Mixture

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Bias 0.2077 0.1843 0.1381 0.2584 0.1850 0.1692 0.2296 0.1969 0.1583
MSE 0.7479 0.2764 0.1971 0.3267 0.1808 0.1509 0.2526 0.1910 0.1396

�̂1 Bias −0.0186 −0.0131 −0.0083 −0.0287 −0.0140 −0.0103 −0.0251 −0.0153 −0.0099
MSE 0.0036 0.0013 0.0006 0.0041 0.0010 0.0005 0.0032 0.0011 0.0005

MLE �̂0 Bias −0.0100 0.0040 0.0065 0.2204 0.1482 0.1308 0.1301 0.0904 0.0775
MSE 0.0376 0.0192 0.0100 0.2841 0.1425 0.1077 0.1527 0.0865 0.0623

�̂1 Bias −0.0022 −0.0016 −0.0010 −0.0247 −0.0115 −0.0080 −0.0133 −0.0070 −0.0047
MSE 0.0001 0.0000 0.0000 0.0036 0.0008 0.0004 0.0018 0.0005 0.0002

Mixture �̂0 Bias 0.1054 0.0604 0.0410 0.2376 0.1640 0.1493 0.2226 0.1638 0.0906
(k = 2) MSE 0.5528 0.0688 0.0359 0.3039 0.1616 0.1339 0.2487 0.1671 0.0910

�̂1 Bias −0.0097 −0.0043 −0.0025 −0.0265 −0.0125 −0.0091 −0.0242 −0.0128 −0.0056
MSE 0.0022 0.0002 0.0001 0.0039 0.0009 0.0005 0.0031 0.0010 0.0003

Mixture �̂0 Bias 0.0884 0.0383 0.0197 0.2442 0.1560 0.1371 0.2220 0.1643 0.0938
(k = 3) MSE 0.5362 0.0483 0.0199 0.3163 0.1702 0.1346 0.2501 0.1703 0.1058

�̂1 Bias −0.0080 −0.0028 −0.0012 −0.0273 −0.0119 −0.0083 −0.0242 −0.0128 −0.0058
MSE 0.0020 0.0002 0.0000 0.0041 0.0010 0.0005 0.0031 0.0010 0.0004
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Table 5
Comparison between OLS con4dence intervals and con4dence intervals computed according to the proposed
approach for the regression function R1

Normal Extreme value Gamma

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Width 1.164 0.829 0.589 1.146 0.820 0.585 1.161 0.824 0.585
Coverage 0.929 0.944 0.953 0.921 0.940 0.957 0.942 0.942 0.955

�̂1 Width 1.344 0.957 0.680 1.323 0.946 0.676 1.339 0.952 0.676
Coverage 0.945 0.955 0.950 0.934 0.944 0.951 0.939 0.947 0.952

�̂2 Width 2.611 1.855 1.318 2.570 1.834 1.309 2.602 1.844 1.309
Coverage 0.938 0.941 0.952 0.931 0.947 0.958 0.950 0.940 0.938

Mixture �̂0 Width 1.166 0.832 0.592 1.149 0.827 0.597 1.157 0.807 0.552
Coverage 0.929 0.944 0.951 0.926 0.954 0.964 0.944 0.948 0.958

�̂1 Width 1.353 0.965 0.684 1.365 0.964 0.673 1.364 0.913 0.609
Coverage 0.945 0.955 0.953 0.936 0.952 0.969 0.945 0.967 0.983

�̂2 Width 2.633 1.871 1.326 2.656 1.889 1.320 2.680 1.809 1.191
Coverage 0.937 0.944 0.949 0.940 0.954 0.971 0.953 0.963 0.978

Lognormal t Mixture

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Width 1.028 0.734 0.535 1.135 0.830 0.580 1.178 0.827 0.588
Coverage 0.892 0.918 0.931 0.934 0.951 0.957 0.948 0.955 0.944

�̂1 Width 1.186 0.848 0.618 1.310 0.958 0.670 1.360 0.955 0.679
Coverage 0.955 0.954 0.958 0.943 0.946 0.925 0.944 0.941 0.945

�̂2 Width 2.304 1.643 1.196 2.545 1.856 1.297 2.641 1.851 1.316
Coverage 0.941 0.942 0.960 0.935 0.941 0.943 0.948 0.945 0.942

Mixture �̂0 Width 0.888 0.593 0.422 1.141 0.837 0.587 1.176 0.807 0.537
Coverage 0.897 0.910 0.937 0.943 0.953 0.955 0.949 0.952 0.942

�̂1 Width 1.001 0.540 0.369 1.361 0.970 0.690 1.364 0.909 0.556
Coverage 0.959 0.984 0.988 0.942 0.951 0.941 0.943 0.936 0.950

�̂2 Width 1.909 1.064 0.718 2.631 1.902 1.328 2.658 1.765 1.089
Coverage 0.964 0.976 0.984 0.945 0.952 0.951 0.946 0.939 0.942

Obviously, when the true distribution of the error terms is the normal one, the power
of the correlation test for normality is very close to the nominal level of signi4cance.
In the other cases the power is greater, especially for highly skewed and=or leptokurtic
distributions such as the Gamma and the Lognormal. As we may expect, the power
also increases with the sample size.

For any sample, the regression parameters (�0, �1; �2 for R1 and �0; �1 for R2)
are estimated either through the mixture-based method described in Section 3 or the
standard OLS method, according to whether the hypothesis of normality is rejected or
not. We chose 0.05 as a level of signi4cance for such a test. Tables 3 and 4 show
the bias and the mean-square error (MSE) of the resulting estimator for a number
of components of the mixture (k) equal to 2 and 3; these tables also show the bias
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Table 6
Comparison between OLS con4dence intervals and con4dence intervals computed according to the proposed
approach for the regression function R2

Normal Extreme value Gamma

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Width 1.694 1.401 1.228 1.662 1.416 1.234 1.664 1.390 1.213
Coverage 0.925 0.916 0.930 0.906 0.911 0.895 0.923 0.926 0.922

�̂1 Width 0.186 0.105 0.073 0.181 0.103 0.072 0.176 0.101 0.072
Coverage 0.914 0.915 0.921 0.895 0.910 0.907 0.920 0.922 0.924

Mixture �̂0 Width 1.701 1.403 1.234 1.680 1.417 1.249 1.687 1.375 1.143
Coverage 0.924 0.914 0.930 0.902 0.927 0.926 0.925 0.940 0.944

�̂1 Width 0.187 0.105 0.073 0.180 0.102 0.073 0.175 0.097 0.066
Coverage 0.914 0.913 0.921 0.887 0.927 0.938 0.910 0.950 0.944

Lognormal t Mixture

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100

OLS �̂0 Width 1.405 1.279 1.129 1.672 1.369 1.203 1.700 1.393 1.216
Coverage 0.891 0.896 0.902 0.917 0.914 0.946 0.919 0.932 0.936

�̂1 Width 0.144 0.090 0.066 0.181 0.101 0.071 0.186 0.103 0.072
Coverage 0.899 0.908 0.916 0.910 0.930 0.944 0.911 0.928 0.928

Mixture �̂0 Width 1.319 1.033 0.929 1.690 1.395 1.186 1.663 1.294 0.964
Coverage 0.917 0.954 0.970 0.920 0.922 0.946 0.914 0.926 0.930

�̂1 Width 0.122 0.064 0.051 0.182 0.103 0.070 0.180 0.093 0.055
Coverage 0.936 0.972 0.970 0.912 0.928 0.956 0.902 0.912 0.926

and the MSE of the OLS estimator as well as those of the MLE based on the true
distribution of the error terms.

As we may expect, the MLE performs much better than the OLS estimator for
any distribution we considered, apart from the normal one. In these situations also
the proposed estimator performs better than the OLS estimator, especially when the
true distribution of the error terms is highly skewed and=or leptokurtic. Obviously,
our estimator generally performs worse than the MLE; the latter, however, requires
the knowledge of true distribution of the error terms. Finally, note that the number
of components of the mixture does not a5ect signi4cantly the MSE of the proposed
estimator of the regression parameters and so we suggest to use k = 2 components.
This is the most favorable situation from the point of view of the parameter estimation:
the EM algorithm in Section 3 is fast and the problem of the choice of its starting
values is negligible. A similar result has been obtained for the homoscedastic case
(�2

h = �2, ∀h) considered in the previous version of the paper (see tables available at
http://stat.unipg.it/∼luisa) in which we have taken into account mixtures with a number
of components up to 5.

For each simulated sample we also computed a 95% con4dence interval for any
regression parameter. When we reject the hypothesis of normality, these intervals are
computed through a bootstrap method (Efron and Tibshirani, 1993) based on 500

http://stat.unipg.it/~luisa
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subsamples; in this case, only mixtures of k = 2 components have been considered.
Tables 5 and 6 show the average width of these intervals together with the coverage
probability.

Note that the actual coverage probability of the con4dence intervals computed on the
basis of the proposed approach is generally larger than that of the intervals computed,
as usual, on the basis of the OLS estimates. In many situations, the latter ones are
wider; the di5erence is clear for the Gamma and Lognormal distributions. These results
con4rm that, when the true distribution of the stochastic component of the regression
model departs from normality, the inference on the parameters can signi4cantly bene4t
from the use of mixtures of normal distributions to model such a component.
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