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S

We propose a class of estimators of the Bayes factor which is based on an extension of
the bridge sampling identity of Meng & Wong (1996) and makes use of the output of the
reversible jump algorithm of Green (1995). Within this class we give the optimal estimator
and also a suboptimal one which may be simply computed on the basis of the acceptance
probabilities used within the reversible jump algorithm for jumping between models. The
proposed estimators are very easily computed and lead to a substantial gain of efficiency
in estimating the Bayes factor over the standard estimator based on the reversible jump
output. This is illustrated through a series of Monte Carlo simulations involving a linear
and a logistic regression model.
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Reversible jump.

1. I

In the Bayesian context, the most widespread model choice criterion is based on the
Bayes factor (Jeffreys, 1935, 1961; Kass & Raftery, 1995; Lavine & Schervish, 1999), which,
for two models, M1 and M2 say, may be interpreted as a measure of the evidence provided
by the data in favour of M1 relative to M2 . It is the ratio of the marginal likelihood of
M1 to that of M2 or, equivalently, the ratio of the posterior to the prior odds of M1
relative to M2 . Clearly, when there are more than two models, the Bayes factor can be
computed for each pair in order to identify the one which is most strongly supported by
the data.

The method’s applicability has been limited by the fact that exact evaluation of the
Bayes factor is seldom feasible. However, many estimation methods are now available in
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the Markov chain Monte Carlo literature; for a review see Han & Carlin (2001),
Dellaportas et al. (2002) or Green (2003). These are based on the estimation of marginal
likelihoods or on the estimation of the posterior probabilities of the available models.
Typically, methods belonging to the first class use the output of separate Markov chains
run independently for each model, while those in the second class use the output of a
single Markov chain on an enlarged state space that explores all models at once.

One of the earliest methods belonging to the first class was proposed by Chib (1995)
and further extended by Chib & Jeliazkov (2001). This method is based on the estimation
of the marginal likelihood of any available model from the output of a Markov chain
Monte Carlo algorithm used to draw samples from the posterior distribution of the model
parameters. Recently, a very powerful tool for estimating the ratio of the normalising
constants of two distributions, and so also the Bayes factor, has been introduced by Meng
& Wong (1996) on the basis of the so-called bridge sampling identity. Other estimation
methods in this first class have been proposed by Chen & Shao (1997a, b), Gelman &
Meng (1998) and Meng and Schilling (2002).

The best-known method in the second class is based on the reversible jump algorithm
of Green (1995), which allows us to sample from the model and parameter space jointly
and estimates the posterior probabilities of each model by the relative frequencies of visits.
Other methods in this class have been proposed by Carlin & Chib (1995), Godsill (2001)
and Dellaportas et al. (2002).

The above estimation methods present advantages and drawbacks. Those in the first
class, in particular, are quite efficient but can be impractical if the number of candidate
models is very large. Moreover, it is usually complicated to implement them and they
require a fair amount of ‘bookkeeping’. Instead, the standard estimator based on the
reversible jump output, as well as the other methods in the second class, is easily computed
and can be used even when the number of competing models is huge; however, this
estimator is generally not very efficient. Moreover, the reversible jump algorithm, on which
it is based, requires accurate tuning of the jump proposals in order to promote mixing
among models.

In this paper, we propose a class of estimators of the Bayes factor based on the reversible
jump output, which improves the efficiency of the standard estimator. The approach is
based on an extension of the bridge sampling identity of Meng & Wong (1996) along the
same lines as Chen & Shao (1997b), Meng & Schilling (2002) and Mira & Nicholls (2004).
Within the proposed class of estimators we derive, on the basis of the optimal rule given
in Meng & Wong (1996), the most efficient estimator that may be computed through a
simple iterative rule. We also suggest a suboptimal estimator which may be directly
computed, without extra computing effort, on the basis of the acceptance probabilities
used within the reversible jump algorithm for jumping between models.

2. P

2·1. Definition of Bayes factor

Let {M1 , . . . , MK} denote the set of available models and, for model M
k
, let H

k
be the

parameter space, whose elements will be denoted by h
k
with the subscript k dropped when

the model to which is referred is clear from the context. Also let p
k
(y|h) be the likelihood

for an observed sample y, let p
k
(h) be the prior distribution on the parameters and let p

k
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be the prior probability of M
k
. The Bayes factor between M

k
and M

l
( lNk) is defined as

B
kl
=

p
k
(y)

p
l
(y)

, (1)

where

p
k
(y)=P

H
k

p
k
(y|h)p

k
(h)dh (2)

is the marginal likelihood of M
k
. This justifies the common interpretation of the Bayes

factor according to which the larger B
kl

is, the greater is the evidence provided by the
data in favour of M

k
relative to M

l
. An alternative expression is

B
kl
=

p(k|y)
p(l|y)N pkp

l
, (3)

where

p(k|y)=
p
k
(y)p
k

WK
h=1

p
h
(y)p
h

(4)

is the posterior probability of M
k
. Note that (3) is equal to the ratio of the posterior to

the prior odds in favour of M
k
.

2·2. Estimating marginal likelihoods

Two methods that received considerable attention among those dealing with the
estimation of marginal likelihoods are due to Chib (1995) and to Meng & Wong (1996).
The first is based on the identity

p
k
(y)=

p
k
(y, h: )

p
k
(h: |y)

,

which holds for any fixed h:µH
k
, where p

k
(y, h)=p

k
(y|h)p

k
(h) and

p
k
(h|y)=

p
k
(y, h)

p
k
(y)

(5)

is the posterior distribution of the parameters of model M
k
. Estimating p

k
(y) is therefore

equivalent to estimating p
k
(h: |y) for an appropriately chosen h: . Chib & Jeliazkov (2001)

showed that a suitable estimate of p
k
(h: |y) may be obtained from the Metropolis–Hastings

(Metropolis et al., 1953; Hastings, 1970) output for sampling from the posterior
distribution p

k
(h|y) that uses

a
k
(h, h*)=minq1,

p
k
(y, h*)q

k
(h|h*)

p
k
(y, h)q

k
(h*|h) r

as acceptance probability for moving from h to a proposed h*, where q
k
(h*|h) is the

proposal distribution. In fact, we have

p
k
(h: |y)=

E
k
{a
k
(h, h: )q

k
(h: |h)}

E*
k
{a
k
(h: , h*)}

, (6)
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where E
k
denotes expectation under p

k
(h|y) and E*

k
that under q

k
(h*|h: ). Consequently, we

can estimate p
k
(h: |y) by

p@
k
(h: |y)=

Wnki=1
a
k
(h
ki
, h: )q
k
(h: |h
ki
)/n
k

Wn*ki=1
a
k
(h: , h*
ki
)/n*
k

, (7)

where h
ki

(i=1, . . . , n
k
) is a sample from p

k
(h|y) and h*

ki
(i=1, . . . , n*

k
) is a sample from

q
k
(h*|h: ). Then we can estimate the marginal likelihood of M

k
as p@
k
(y)=p

k
(y, h: )/p@

k
(h: |y),

and, because of (1), the Bayes factor between M
k
and M

l
as

BC CJ
kl
=

p@
k
(y)

p@
l
(y)

.

In order to increase the estimator efficiency, Chib & Jeliazkov (2001) also suggested
splitting the parameters into blocks which are updated separately. The point h: is arbitrary,
but in practice it is chosen as a point of high posterior density so as to maximise the
accuracy of the approximation; it generally coincides with the posterior mean or the
maximum likelihood estimate of h

k
.

The approach of Meng & Wong (1996), based on the bridge sampling identity, allows
us to estimate the ratio of the normalising constants of two distributions. From (5) we
have that the marginal likelihood of a model may be seen as the normalising constant of
the posterior distribution, and so this approach may be used directly to estimate B

kl
as

follows. Assume for simplicity that H
k

and H
l
have the same dimension; then, according

to the bridge sampling identity,

B
kl
=

p
k
(y)

p
l
(y)
=

E
l
{h(h)p

k
(y, h)}

E
k
{h(h)p

l
(y, h)}

, (8)

where h(h) is an arbitrary function such that the expected values above are bounded
away from 0 and 2. Therefore, given random draws h

ki
(i=1, . . . , n

k
) from p

k
(h|y) and

h
li

(i=1, . . . , n
l
) from p

l
(h|y), together with a choice of h(h), we can estimate the Bayes

factor by

BC MW
kl
=
Wnli=1

h(h
li
)p
k
(y, h
li
)/n
l

Wnki=1
h(h
ki
)p
l
(y, h
ki
)/n
k
. (9)

For the case of independent draws, Meng & Wong (1996) also found the function h(h)
that minimises the asymptotic relative mean squared error defined, for a generic estimator
BC
kl

of B
kl
, by E(BC

kl
−B
kl
)2/B2
kl
; this optimal choice is

ho (h)3{n
k
p
k
(y, h)+n

l
p
l
(y, h)B

kl
}−1. (10)

Note that computing (10) requires knowledge of B
kl
, which is obviously unknown.

However, given an initial guess for B
kl
, substituting (10) into (9) allows us to compute an

improved estimate of B
kl
. This procedure, repeated iteratively, converges to the same limit

regardless of the initial guess (Meng & Wong, 1996, Theorem 2); asymptotically, the
resulting estimator has the same relative mean squared error as that of the optimal one.
When the draws from the posteriors are not independent, Meng & Wong (1996) argued
that the optimal choice of h(h) still has the same form, but with n

k
and n

l
in (10) replaced

with the effective sample sizes.
Note that identity (8) cannot be used when there is no overlap between H

k
and H

l
or

when the two parameter spaces have different dimensions, and so the approach of Meng
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& Wong (1996) has been suitably extended. In particular, for the case of nested models,
Chen & Shao (1997b) suggested embedding the lower-dimensional density in the higher-
dimensional one by ‘patching up’ a conditional distribution with known normalising
constant so that (8) may be applied directly. The case of densities with non-overlapping
supports has been dealt with by Meng & Schilling (2002), who suggest shifting the densities
to reduce the distance between them before applying the identity.

Finally note that, as shown by Mira & Nicholls (2004), the estimator of Chib (1995)
and Chib & Jeliazkov (2001) belongs to the class of estimators based on the bridge
sampling identity (8). This is because p

k
(h: |y) may be seen as the ratio of two normalising

constants, namely p
k
(y, h: ) of the proposal distribution, when we take q

k
(h|h: )p

k
(y, h: ) as

the unnormalised density for this distribution, and p
k
(y) of the posterior distribution.

Therefore, identity (6), on which the estimator in question is based, may be expressed in
terms of (8), with h(h)=a

k
(h: , h)/p

k
(y, h) used to bridge the two distributions. Note that

estimation error comes from the dissimilarity between these distributions. Mira & Nicholls
(2004) also suggested using the optimal bridge function ho (h) proposed by Meng & Wong
(1996) in order to improve the efficiency of the estimator in question.

2·3. Estimating posterior model probabilities

Among the second class of estimation methods of the Bayes factor outlined in § 1, the
best known is based on the output of the reversible jump algorithm of Green (1995).
To ensure reversibility of the Markov chain on which the reversible jump algorithm is
based, we assume that, for any pair of models (M

k
, M
l
), there exists a diffeomorphism

(h
l
, u
k
)=g
kl
(h
k
, u
l
) from S

kl
={(h

k
, u
l
)} to S

lk
={(h

l
, u
k
)}, where u

k
and u

l
are suitable

vectors of auxiliary variables defined so that S
kl

and S
lk

have the same dimension.
Therefore, if the current state of the Markov chain is (k, h

k
), a new state, ( l, h

l
) say, is

proposed by generating u
l
from a suitable proposal distribution q

l|k
(u
l
|h
k
); the proposed

move is then accepted with probability

a
kl
(h
k
, u
l
)=min{1, b

kl
(h
k
, u
l
)}, (11a)

where

b
kl
(h
k
, u
l
)=

p
l
(y, h
l
)q
k|l

(u
k
|h
l
)

p
k
(y, h
k
)q
l|k

(u
l
|h
k
)
J
kl
(h
k
, u
l
), (11b)

in which J
kl
(h
k
, u
l
) is the Jacobian of the transformation g

kl
(h
k
, u
l
) and, for simplicity, we

have assumed that p
l
=p
k

and that the probability of proposing M
l
when the current

model is M
k

is equal to that of proposing M
k

when the current model is M
l
. After a

suitable number n, say, of iterations, p(k|y) is estimated as the number of times n
k

the
chain visited M

k
, divided by n; denote this estimator by p@ (k|y). Then the standard estimator

of B
kl

based on the reversible jump output is

BC RJ
kl
=

p@ (k|y)
p@ ( l|y)

=
n
k

n
l
. (12)

3. T  

3·1. An extension of the bridge sampling identity

We propose a new class of estimators of the Bayes factor based on the standard reversible
jump output. To illustrate this class we first have to introduce a simple extension of the
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bridge sampling identity. In practice, we enlarge the parameter space of any model under
comparison with the same auxiliary variables defined within the reversible jump frame-
work so that the enlarged spaces have the same dimension and we are back into the
‘same-dimensional’ setting outlined in § 2·2.

Consider the following conditional distribution of the parameter vector h
k

of M
k

and
the vector of auxiliary variables u

l
given the observed sample y:

p
kl
(h
k
, u
l
|y)=

f
kl
(y, h
k
, u
l
)

p
k
(y)

, (h
k
, u
l
)µS
kl
, (13)

where f
kl
(y, h
k
, u
l
)=p
k
(y, h
k
)q
l|k

(u
l
|h
k
) and q

l|k
(u
l
|h
k
) is the proposal distribution used

within the reversible jump algorithm for jumping from M
k
to M

l
.

Thus, following the analogy outlined at the end of § 2·2, we can compute B
kl

as the
ratio of the normalising constant of the distribution p

kl
(h, u|y), when we take f

kl
(y, h, u) as

the unnormalised density, to that of p
lk
(h, u|y). This intuition leads to the following theorem

in which E
kl

denotes expectation under the first of these distributions and E
lk

under the
second one.

T 1. For any function h
lk
(h
l
, u
k
), it holds that

B
kl
=

p
k
(y)

p
l
(y)
=

E
lk
[ f
kl
{y, g
lk
(h, u)}h

lk
(h, u)]

E
kl
[ f
lk
{y, g
kl
(h, u)}h

lk
{g
kl
(h, u)}J

kl
(h, u)]

, (14)

provided the expected values above are bounded away from 0 and 2.

Proof. It is sufficient to consider that the numerator of (14) is equal to

1

p
l
(y) P
S
lk

f
kl
{y, g
lk
(h, u)}h

lk
(h, u) f

lk
(y, h, u)dhdu,

which equals, after a change of variables of integration,

1

p
l
(y) P
S
kl

f
kl
(y, h, u)h

lk
{g
kl
(h, u)} f

lk
{y, g
kl
(h, u)}J

kl
(h, u)dhdu.

The latter is just p
k
(y)/p
l
(y) times the denominator of (14). %

On the basis of this result, B
kl

can be consistently estimated by

Wnli=1
f
kl
{y, g
lk
(h
li
, u
ki
)}h
lk
(h
li
, u
ki
)/n
l

Wnki=1
f
lk
{y, g
kl
(h
ki
, u
li
)}h
lk
{g
kl
(h
ki
, u
li
)}J
kl
(h
ki
, u
li
)/n
k
, (15)

where (h
ki
, u
li
), for i=1, . . . , n

k
, is a sample from p

kl
(h, u|y) and (h

li
, u
ki
), for i=1, . . . , n

l
,

is a sample drawn from p
lk
(h, u|y). Note that, when these samples are taken from the

reversible jump output, as we suggest, n
k

and n
l
are not fixed but stochastic since the

algorithm randomly jumps between models. Note also that it is not ensured that estimator
(15) is better than the standard estimator in (12) based on the reversible jump output for
any choice of the bridge function h

lk
(h, u). On the contrary, some simulations not reported

here showed that (15) can perform worst than (12) when, for example, we set h
lk
(h, u)

equal to the geometric function or the constant function described in Meng & Wong
(1996, § 5). Instead, the choices of the bridge function presented in §§ 3·2 and 3·3 lead to
a substantial gain of efficiency over the standard reversible jump estimator.
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3·2. Noniterative choice of the bridge function

A very simple estimator of the Bayes factor can be obtained from (14) by letting

h
lk
(h, u)=

a
lk
(h, u)

f
kl
{y, g
lk
(h, u)}

,

where a
lk
(h, u) is the acceptance probability of the reversible jump algorithm defined

in (11). With this choice, the numerator of (14) simply becomes E
lk
{a
lk
(h, u)}, while the

denominator becomes

E
klC flk{y, g

kl
(h, u)}a

lk
{g
kl
(h, u)}J

kl
(h, u)

f
kl
(y, h, u) D ,

which is equal to E
kl
[b
kl
(h, u)a

lk
{g
kl
(h, u)}] and, in turn, to E

kl
{a
kl
(h, u)}. This is because

definition (11) implies that if a
lk
{g
kl
(h, u)}=1 then b

kl
(h, u) is less then 1 and it coincides

with a
kl
(h, u); if instead a

lk
{g
kl
(h, u)}<1, we have that b

kl
(h, u)a

lk
{g
kl
(h, u)}=1, the

same value attained by a
kl
(h, u). Therefore, the identity at issue becomes B

kl
=

E
lk
{a
lk
(h, u)}/E

kl
{a
kl
(h, u)} and the Bayes factor may be consistently estimated by

BC *
kl
=
Wnli=1

a
lk
(h
li
, u
ki
)/n
l

Wnki=1
a
kl
(h
ki
, u
li
)/n
k

. (16)

Note that all the quantities required to compute this estimator are provided by the
standard reversible jump output. Therefore, as will be shown through the simulations
presented in § 4, this estimator is simply a more efficient way of postprocessing the
reversible jump output without extra computational effort. Intuitively, the gain in efficiency
is due to the fact that, while BC RJ

kl
is based on an auxiliary random process for jumping

from one model to another, which obviously increases the variability of the estimator, our
estimator BC *

kl
is obtained by integrating out this auxiliary random process and thus it may

be seen as a Rao–Blackwellised version of BC RJ
kl

; see also Casella & Robert (1996).

3·3. Iterative choice of the bridge function

As indicated in § 3·1, our extension of the bridge sampling identity is obtained by
enlarging the parameter spaces of the models under comparison so that we can go back
to the same-dimensional setting of Meng & Wong (1996). Therefore, from their Theorem 1
it follows that the optimal bridge function, i.e. the one leading to the smallest asymptotic
relative mean squared error under independent draws, is

ho
lk
(h, u)3[n

k
f
kl
{y, g
lk
(h, u)}+n

l
f
lk
(y, h, u)J

kl
{g
lk
(h, u)}B

kl
]−1. (17)

We denote the resulting estimator of the Bayes factor between M
k
and M

l
by BC †

kl
.

As stressed in Meng & Wong (1996), the choice of h
lk
(h, u) given in (17) is optimal

when the draws from p
kl
(h, u|y) and p

lk
(h, u|y) are independent. In the present case, these

draws are obtained from the standard output of the reversible jump algorithm, and
therefore they are definitely not independent. Meng & Wong (1996) conjecture that in
this situation the optimal bridge function has still the same form as that given under
independent draws, but with n

k
and n

l
being the effective sample sizes. In order to estimate

the effective size of the sample from p
kl
(h, u|y), we divided n

k
by an estimate of the integrated

autocorrelation time, t=W2
h=−2

r
h
, where

r
h
=cov[ f

kl
{y, g
lk
(h
li
, u
ki
)}, f
kl
{y, g
lk
(h
l,i+h

, u
k,i+h

)}]/s2
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with s2 being the variance of f
kl
{y, g
lk
(h, u)} under the stationary distribution. To

estimate t we rely on the adaptive truncated periodogram estimator of Sokal (1989), given
by t@=W

|h|∏M
r@
h
, where the window width M is chosen adaptively as the minimum integer

such that M�3t@. In particular, we use the fast Fourier transform to estimate the auto-
correlations r

h
. With the same procedure we estimate the effective sample size for the

sample from p
lk
(h, u|y). We denote by BC ‡

kl
the estimator of the Bayes factor between models

M
k
and M

l
obtained on the basis of (15), using the optimal choice of h

lk
(h, u) given in (17)

and adjusting for the effective sample sizes.
Finally note that computation of each of the estimators BC †

kl
and BC ‡

kl
needs an iterative

procedure, since the function ho
lk
(h, u) depends on the unknown B

kl
. Thus BC †

kl
and BC ‡

kl
require some additional, though typically minor, computational time compared to BC *

kl
.

3·4. Use of the proposed estimator in practice

The conventional estimator based on the reversible jump output can be directly applied
to estimate B

kl
for any pair of models (M

k
, M
l
), since it is given by the number of times

the Markov chain visited M
k

divided by the number of times it visited M
l
. Instead, the

estimators we propose can be used directly only when jumps between M
k

and M
l
are

allowed. However, the reversible jump algorithm is usually implemented so that, once a
given model is reached, it can jump only to a limited number of other models. In the
following we show that this does not limit the applicability of our approach.

Suppose that, once M
k

is reached, the reversible jump algorithm can jump only to
M
k−1

, if k>1, or to M
k+1

, if k<K, so that the samples required to compute our
estimators BC *

k+1,k
, BC †
k+1,k

and BC ‡
k+1,k

are available for k=1, . . . , K−1. Then, for any pair
of nonconsecutive models M

k
and M

l
, with l>k, we can estimate B

kl
by

BC
kl
=BC
k,k+1

BC
k+1,k+2

. . . BC
l−1,l

,

where BC indicates any of our estimators. By inverting (3) we may also estimate the posterior
probabilities p(k|y); when p

k
=1/K (k=1, . . . , K ) for simplicity, we have

p@ (k|y)=
BC
k1

1+BC
21
+BC
31
+ . . .+BC

K1
, BC
k1
= (BC
1k

)−1.

4. S 

4·1. L inear regression analysis

Han & Carlin (2001) compared several methods for estimating the Bayes factor between
two nonnested linear regression models used to analyse a dataset concerning the maximum
compressive strength parallel to the grain, Y , for 42 specimens of radiata pine with
density, X, and resin-adjusted density, Z, as possible explanatory variables; see also
Carlin & Chib (1995). The two competing models are

M
1
: Y
i
=a+b(x

i
−x: )+ei , ei~N(0, n2 ),

M
2
: Y
i
=c+d(z

i
−z:)+gi , g

i
~N(0, t2 ),

with the following prior distributions: N (3000, 106 ) for both a and c, N (185, 104 ) for both
b and d and {3, 1/(2×3002 )} for both n2 and t2, where (a, b) denotes the inverse
gamma distribution.
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The reversible jump algorithm used in this setting is based on n=60 000 iterations, of
which the first 10 000 are treated as burn-in, and on two types of move, namely within-
model and across-models, each with probability 1

2
. As in Han & Carlin (2001), we used

the following proposal distributions to update the parameters within M1 :

a*~N(a, 5000), b*~N(b, 250), n2*~{log (n2 ), 1},

where (m, s2 ) denotes the lognormal distribution. For the parameters c, d and t2 of M2
we used, respectively, the same proposals as for a, b and n2, while, to jump from M1
to M2 , we simply let (c*, d*, t2* )= (a, b, n2 ), and similarly to jump from M2 to M1 . This
is the equivalent of taking the functions g12 (h1 , u2 ) and g21 (h2 , u1 ), where h1= (a, b, n2 )
and h2= (c, d, t2 ), as identity functions and auxiliary vectors u1 and u2 of null dimension;
the Jacobian of the transformation in question is always equal to 1.

To compare in terms of efficiency the estimators of the Bayes factor between M2 and
M1 , whose true value is B21=4862, as given in an unpublished University of Nottingham
technical report by P. J. Green and A. O’Hagan, we relied on 100 Monte Carlo simulations.
The results of these simulations are displayed in Table 1, where by relative error we mean
the square root of the relative mean squared error defined in § 2·2.

Table 1. Comparison of the Bayes factor estimators for the
data in Han & Carlin (2001) on the basis of 100 Monte

Carlo simulations

BC RJ
21

BC *
21

BC †
21

BC ‡
21

Mean 4671·1 4864·8 4864·3 4848·9
Standard error 1261·7 204·5 204·4 246·3
Relative error 26·25% 4·21% 4·20% 5·07%

According to these results, the use of our estimator BC *
21

considerably improves the
efficiency in estimating B21 relative to BC RJ

21
with no extra computational time: the relative

error decreases from 26·25% to 4·21%. The estimator BC †
21

has an efficiency very similar
to that of BC *

21
, while BC ‡

21
performs better than BC RJ

21
but worse than the other two. This

depends on the fact that M2 is much more likely than M1 , and therefore the reversible
jump algorithm seldom jumps from M2 to M1 ; in other words, we have a very low
acceptance rate for this kind of move and thus a very small sample from p12 (h, u|y). In this
case the estimate of the effective sample size becomes particularly unreliable. Han & Carlin
(2001) overcome this problem by letting the priors of the models equal p1=0·9995 and
p2=0·0005; however, this requires extra programming and computing time.

4·2. L ogistic regression analysis

Dellaportas et al. (2002) compared several methods for selecting a hierarchical
logistic regression model for the number of survivals, Y , in a sample of 79 subjects
suffering a certain illness using the patient condition, A, and the received treatment, B, as
explanatory factors.

We have five possible models: M1 (intercept); M2 (intercept+A); M3 (intercept+B);
M4 (intercept+A+B); M5 (intercept+A+B+A.B). In particular, the full model, M5 , is
formulated as

Y
ij
~Bi(n

ij
, p
ij
), logit( p

ij
)=m+mA

i
+mB
j
+mAB
ij

,
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where, for i, j=1, 2, Y
ij
, n
ij

and p
ij

are, respectively, the number of survivals, the total
number of patients and the probability of survival for the patients with condition i who
received treatment j. Dellaportas et al. (2002) also used the sum-to-zero identifiability
constraint and the prior N (0, 8) for any of the identifiable parameters, m, mA

2
, mB
2

and
mAB
22

, which by assumption are also a priori independent. The same assumptions are made
for any reduced model. Finally, the following proposal was used to update the parameters
within the same model, within-model move, and also to jump from one model to another,
across-model move:

m*~N(−0·47, 0·27), mA*
2
~N(−0·87, 0·27),

mB*
2
~N(0·56, 0·28), mAB*

22
~N(−0·17, 0·27).

Thus, for example, to jump from M2 to M3 , we use vectors of auxiliary variables, u2 and
u3 , of size 1, with the second one proposed from a N (0·56, 0·28) distribution. Then
(h3 , u2 )=g23 (h2 , u3 ) is a function that permutes the elements of (h2 , u3 ) in a suitable way;
the Jacobian of this function is again equal to 1.

In this setting we used 30 000 interations, discarding the first 5000 as burn-in, for the
reversible jump algorithm. As in § 4·1, the estimators of the Bayes factor have been com-
pared, on the basis of their efficiency, using 100 Monte Carlo simulations; the results of
this comparison are shown in Table 2, where as true value of any B

kl
we took the mean

over all simulations and estimators.

Table 2. Comparison of the Bayes factor estimators for
the data in Dellaportas et al. (2002) on the basis of 100

Monte Carlo simulations

B21 B32 B43 B54
BC RJ
kl

Mean 101·3800 0·0233 38·4130 0·1174
Standard error 10·5180 0·0025 3·8397 0·0033
Relative error 10·57% 10·97% 9·95% 2·81%

BC *
kl

Mean 99·8690 0·0228 39·1240 0·1181
Standard error 0·6894 0·0003 0·4521 0·0017
Relative error 0·74% 1·43% 1·29% 1·50%

BC †
kl

Mean 99·7830 0·0228 39·0520 0·1176
Standard error 0·7754 0·0003 0·4954 0·0019
Relative error 0·85% 1·36% 1·32% 1·60%

BC ‡
kl

Mean 99·5730 0·0229 39·0470 0·1176
Standard error 2·7192 0·0006 0·5460 0·0016
Relative error 2·78% 2·72% 1·45% 1·35%

Again the standard estimator based on the reversible jump algorithm seems to be the
least efficient in estimating the Bayes factor. The three estimators that we propose perform
much better with very similar relative errors. In particular, note that the estimator BC ‡

kl
performs better than the other two only in estimating B54 , which is close to 1.

5. D

Since computation of BC *
kl

is only marginally more complicated than that of the usual
estimator BC RJ

kl
, and yet the gain in terms of efficiency is consistently high, we recommend

its use in practical applications. On the other hand the extra improvement in efficiency
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obtained when using the optimal estimator BC †
kl

is not always worth the extra computational
and programming effort. Likewise, BC ‡

kl
is not always more efficient than BC †

kl
.

Theoretically, the fact that BC *
kl

performs nearly as well as BC †
kl

can be justified by noting
that both estimators are based on bridge functions belonging to the same power family
defined by Meng & Wong (1996, § 5). In our context, the power family is defined as

h
lk
(h, u)= ([ f

kl
{y, g
lk
(h, u)}]1/a+[A f

lk
(y, h, u)J

kl
{g
lk
(h, u)}]1/a )−a,

for preselected constants a>0 and A>0. The optimal bridge function is obtained by
letting a=1 and A=B

kl
n
l
/n
k
. Note in particular that, since the samples are drawn from

the reversible jump algorithm, n
l
/n
k

is an estimator of B
lk

and thus Aj1. Instead, the
bridge function used in BC *

kl
is obtained with a� 0 and A=1, which results in

h
lk
(h, u)�

1

max[ f
kl
{y, g
lk
(h, u)}, f

lk
(y, h, u)J

kl
{g
lk
(h, u)}]

=
1

f
kl
{y, g
lk
(h, u)} max[1, b

kl
{g
lk
(h
k
, u)}]

=
min{1, b

lk
(h, u)}

f
kl
{y, g
lk
(h, u)}

=
a
lk
(h, u)

f
kl
{y, g
lk
(h, u)}

.

Thus, it can easily be seen that the bridge function for BC *
kl

is an approximation of the
optimal one and the approximation improves if the Bayes factor between the two models
under comparison is far from 1. Finally, the efficiency of BC ‡

kl
over BC †

kl
depends on how

precise our estimates of the integrated autocorrelation time are. Typically, if the Bayes
factor between the two models under comparison is close to 1, then the reversible jump
algorithm jumps between the models more freely, our estimates of the autocorrelation
time are fairly reliable and the gain in efficiency of BC ‡

kl
over BC †

kl
may be relevant.
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dell’Università e della Ricerca.

R

C, B. P. & C, S. (1995). Bayesian model choice via Markov-chain Monte-Carlo methods. J. R.
Statist. Soc. B 57, 473–84.
C, G. & R, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika 83, 81–94.
C,M.H. & S, Q.M. (1997a). On Monte Carlo methods for estimating ratios of normalizing constants.
Ann. Statist. 25, 1563–94.
C, M. H. & S, Q. M. (1997b). Estimating ratios of normalizing constants for densities with different

dimensions. Statist. Sinica 7, 607–30.
C, S. (1995). Marginal likelihood from the Gibbs output. J. Am. Statist. Assoc. 90, 1313–21.
C, S. & J, I. (2001). Marginal likelihood from the Metropolis-Hastings output. J. Am. Statist.
Assoc. 96, 270–81.
D, P., F, J. J. & N, I. (2002). On Bayesian model and variable selection using

MCMC. Statist. Comp. 12, 27–36.
G, A. & M, X. L. (1998). Simulating normalizing constants: from importance sampling to bridge

sampling to path sampling. Statist. Sci. 13, 163–85.
G, S. J. (2001). On the relationship between Markov chain Monte Carlo methods for model uncertainty

methods. J. Comp. Graph. Statist. 10, 230–48.



52 F. B, L. S  A. M

G, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model deter-
mination. Biometrika 82, 711–32.
G, P. J. (2003). Trans-dimensional Markov chain Monte Carlo. In Highly Structured Stochastic Systems,

Ed. P. J. Green, N. L. Hjort and S. Richardson, pp. 179–98. Oxford: Oxford University Press.
H, C. & C, B. P. (2001). Markov chain Monte Carlo methods for computing Bayes factors:

a comparative review, J. Am. Statist. Assoc. 96, 1122–32.
H, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57, 97–109.
J, H. (1935). Some tests of significance, treated by the theory of probability. Proc. Camb. Phil. Soc.
31, 203–22.
J, H. (1961). T heory of Probability, 3rd ed. Oxford: Clarendon Press.
K, R. E. & R, A. E. (1995). Bayes factors. J. Am. Statist. Assoc. 90, 773–95.
L, M. & S, M. J. (1999). Bayes factors: what they are and what they are not. Am. Statistician
53, 119–22.
M, X. L. & S, S. (2002). Warp bridge sampling. J. Comp. Graph. Statist. 11, 552–86.
M, X. L. & W, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: a

theoretical exploration. Statist. Sinica 6, 831–60.
M, N., R, A. W., R, M. N., T, A. H. & T, E. (1953). Equations

of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–91.
M, A. & N, G. (2004). Bridge estimation of the probability density at a point. Statist. Sinica
14, 603–12.
S, A. D. (1989). Monte Carlo methods in statistical mechanics: Foundations and new algorithms. Cours
de T roisième Cycle de la Physique en Suisse Romande, L ausanne.

[Received September 2004. Revised September 2005]


