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Abstract

The pagr is dedicated to the study of the problem of the existence of compact global attractors of
discrete inclusions and to the description of its structure. We consider a family of continuous mappings of a
metric spacV into itself, and(W, fj)j¢ is the family of discrete dynamical systems. On the metric space
W we consider a discrete inclusion

U1 € F(up) 1)

associated with\ = {f; : i € |}, whereF(u) = {f(u) : f € M} for allu € W. We giwe suffidgent
conditions (the family of mapg\ is contracting in the erended sense) for the existence of a compact
global attractor of1). If the family M consists of a finite number of maps, then the corresponding compact
global attractor is chaotic. We study this problem in the framework of non-autonomous dynamical systems
(cogyles).

(© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of this paper is the study of the problem of the existence of compact global attractors
of discrete inclusions and control systems (see, for example, Bobylev &t &opylev et al. [1],
Emel'yanov et al. 18] and the reérences therein). L&/ be a metric spaceVt .= {f; :i € I}
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be a family of continuous mappings W into itself and(W, fj)ic; be the fanly of discrete
dynamical systems, whe@V, f) is a dscrete dynamical system generated by positive powers
of a continuous mag : W — W. On thespaceW we consider a discrete inclusion

Uiyl € F(up)

associated witbM .= {fj : i € 1} (DI(M)), whereF (u) = {f(u) : f e M} forallu e W.
A solution of the discete inclusion DI (M) is (see,for example, §,18,22]) a sequence
{{xj} I j =0} C W suchthat

Xj = finj,l
for somefi; € M (trajectory ofDI (M), i.e.
Xj = fij fij,l'u fi; Xo all fj,, e M.

We can consider it to be a discrete control problem, where at each moment of tiaean
apply a control from the set, andDI (M) is the set of posbie trajectories of the system.

The problem of the existence of compact global attractors for a discrete inclusion arises in a
number of different areas of mathematics: control theory — Bobylev éd]aBpbylev et al. [],
Emel'yanov et al. 18], Molchanov R6]; linear algebra — Artzrounid], Beyn and Elsnerq],

Bru et al. [LO], Cheban and Mammand314], Daubechies and Lagariagq], Elsner and
Friedland [Lg], Elsner et al. 17], Gurvits [22], Kozyakin [25], Vladimirov et al. [34], Wirth [36,

37]; Markov chains — Gurvits 19|, Gurvits and Zaharing0,21]; iteration processes — Bru

et al. [LQ], Opaitsev [27]; the Barnsley—Sloan method of fractal image compression — Barnsley
and Sloan4], Bondarenko and Dolnikow8] and see alsde bibliography therein.

In 1988 Barnsley and Sload][ put forward some ideas, based on concepts of the theory
of dynamical systems, for the compression and storage of graphical information. Their method
was cdled the mehod of fractal compression of information. They consider a finite set of affine
transfomations

M={f:i=12...,m}

(fi : RY - RY), i.e.transfomationsf; of the form f;(u) := Aju + b;, whereA; are square
matrices of orded, andu, bj € RY. These trasformatbns possesses the following properties:

(i) there exists a compadly < RY suchthat f; (M) € Mg for all M € K (Mp), whereK (Mo)
is the set of all compact subsetsidp;
(i) | fi(uy) — fi(u2)| < kijur — uy|, wherek; € [0, 1) and| - | is the norm orRY.

This setM is called an affine collage.
The mappind- : K(Mg) — K (Mp) ddfined by the equality

m
F(M) ;:U fi (M)

i=1

is called a collage mapping.

We mnsider an arbitrary collagét (M contains, generally speaking, an infinite number
of mappingsf) on the complee metric spac&V (W is not obligatory compact) and we give
conditions which guarantee the existence of a compact global attracté# féfr M consists of
a finite nunber of maps, then we prove thatt admits a compact global chaotic attractor. We
study this problem in the framework of non-autonomous dynamical systems (cocyles).
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This paper is organized as follows.

In Sedion 2 we give some notions and facts from the theory of set-valued dynamical systems
which we usen our paper.

Section3 is dedicated to the study of upper semi-continuous (generally speaking set-valued)
invariant sections of non-autonomous dynamical systems. They play a very important role in
the study of non-autonomous dynamical systews.give sufficient condions guaranteeing
the existence of a unique globally exponentially stable invariant secfidre¢rem 3.2— the
main result of the paper). Analogous statements for non-autonomous dynamical systems, when
the base dynamical systertY, T, o) is invertible, are known (see, for examplé2] Ch2]
and B3)]). For the case of the semi-group dynamical syst&iil,, o) (i.e. where the mapping
o(t,-) : Y — Yis notinvertible)Theorem 3.2s formulated and proveaf the firsttime in this
paper.

In Sedion 4 we give a new apmach to the study of discrete inclusiofidl) which is based
on non-autonomous dynamical systems (cocycles). We show that@vgenerates in a natural
way some non-autonomous dynamical system (cocycle), which plays an important role in its
study (see Sectionsand6).

Section5 is dedicated to the study of the relatibetween the compact global attractor of
the cocycle and the skew-product dynamical system (or set-valued dynamical system) associated
with the given cocycle (seheorem 6.2

In Sedion 6 we pmove thatDIl generated by a finite number of continuous mappings
f1, fo, ..., fm (M > 2) admits a compact global chaotic attractor.

2. Set-valued dynamical systemsand their compact global attractors

Let (X, p) be a complete metric spacgbe a group of reafR) or integer(Z) numbers,T
(S+ < T) be a semi-goup of additive grous. If A € X andx € X, then we @note by
o (X, A) the distancdrom the pointx to the setA, i.e. p(x, A) = inf{p(x,a) : a € A}. We
denote byB(A, ¢) an e-neighborhood of the seA, i.e. B(A,g) = {Xx € X : p(X, A) < ¢},
and we denote b¥ (X) the family of all non-empty compact subsets Xf With evel point
x € X and numbett € T we associate a closed compact subsé@t x) € K(X). So, if
7(P,A) =J{n(t,x):t € P,x € A}(P € T), then

(i) 7(0,x) =xforall x € X;
(i) m(to, m(ty, X)) = w(ty +t2, x) forall x € X;
(iii) 1im yx—xo.t—to B (t, X), w(to, X0)) = O for all xo € X andtp € T, whereg(A, B) =
supp(a, B) : a € A} is a semi-deviation of the sét C X from the setB C X.

In this case it is said31] that a set-valued semi-group dynamical system is defined.
LetT = S and let the following condition be fulfilled:

@) if pen(t,x),thenx € w(—t, p) forall x, pe X andt € T.

Then it is said that a set-valued group dynamical syst¥nfil’, =) or a bilateral (two-sided)
dynamical system is defined.

LetT c S(T c T"). A continuous mappingx : T — X is called a motion of the set-valued
dynamical systeniX, T, 7) issuing fran thepointx € X at the initial moment = 0 anddefined
onT’, if
a. yx(0) =x;

b. yx(t2) € w(ty — t1, yx(t1)) forallty, tr € T (t2 > t).
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The set of all motions ofX, T, 7), passing through the pointat the initial moment = 0 is
denoted byFx () andF(x) = [J{Fx(w) | X € X} (or simply F).

The trajectoryy € F (i) defined orS is called a full (entire) trajectory of the dynamical
system(X, T, ).

Denote by &(xr) the st of all full trajectories of the dynamical syste(X, T, =) and
Py () = Fx () () O(70).

Theorem 2.1 ([31]). Let (X, T, =) be a semi-group dynamical system and X be a compact and
invariant set (i.e.7'X = X forallt € T, wherer! := n(t, -)). Then:

(i) F@Gr) = &(x), i.e. every motiony € Fx(r) can be extended df (this means that there
exigsy € Py () suchthaty (t) = y(t) forallt € T);

(ii) there exists a group (generally speéag set-valued) dynamical systdi, S, 7) suchthat
7%|'JT><X =T7.

A system (X, T, ) is called 11,12] compactly dissipative if there exists a non-empty
compactk € X suchthat

i t —0
t_'lrﬂooﬁ(ﬂ M, K) =0;

forall M € K(X).
Let (X, T, =) be compactly dissipative and |&t be a compact set attracting every compact
subset ofX. Let us set

J=wK)=JrK. 2)

t>0t>t

It can be shown1,12] that the setJ defined by equality(2) does not depend on the choice
of the atractorK, but is characterized only by the properties of the dynamical sy, )
itself. The setl is called a center of Levinson of the compact dissipative sys¥sit, ).

Theorem 2.2 ([11,17)). If (X, T, ) is a conpactly dissipative dynamical system and J is its
center of Levinson, then:

(i) Jisinvariant,i.e. 7'J = J forallt € T;
(i) J is orhbtally stable, i.e. for any > 0 there exist$(¢) > 0 suchthat p(x, J) < § implies
B(xt,J) <eforallt >0
(iii) J is an atractor of the family ofall compact subsets of X;
(iv) J is the maxinal conpact invariant set of X, T, ).

3. Continuousinvariant sections of non-autonomous dynamical systems

Let X be a metric space antlbe a topological space. Thetsvalued mapping : Y — K(X)
is sad to be upper semi-continuous (@rcontinuous) if lim,_, y, B(y (¥), ¥ (Yo)) = 0 for all
YoeY.

Let (X, h,Y) be a fibre bundle9,23]. The mappingy : Y — K(X) is called a section
(selector) of the fibre bundigx, h, Y), if h(y(y)) = yforally € Y.

Remark 3.1. Let X := W x Y. Theny : Y — X is a ®ction of the fibre bundl¢X, h, Y)
(h:=prz: X = Y)ifandonlyif y = (¢, Idy) whereyr : W — K(W).
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Let (X, T1,7) and (Y, T2,0) (Sy € T1 € T2 C S) be wo dynamical systems. The
mappingh : X — Y is called a homomorphism (respectively isomorphism) of the dynamical
system(X, T1, ) on (Y, T2, o), if the mappingh is continuous (respectively homeomorphic)
andh(zr(x, t)) = o (h(X), t) (t € T1, x € X).

Atriplet (X, T1, ), (Y, T2, o), h), whereh is ahomomorphism ot X, T1, 7) on (Y, T2, o)
and (X, h,Y) is a locally trivial fibre bundle 9,23, is called a non-autonomous dynamical
system.

A mappingy : Y — X is called an invariant section of the non-autonomous dynamical
system((X, T, ), (Y, T2, o), h) if it is a ®ction of the fibre bundl€X, h, Y) andy (Y) is an
invariant subset of the dynamical systéixX, T, ) (or, equivdently,

Utr'y@ :qe @) o'y = vy
forallt e Tndy €Y).

Theorem 3.2. Let ((X, T1, ), (Y, T2, o), h) be a non-autonomous dynamical system and the
following conditions be fulfilled:

(i) the pace Y is compact;
(i) Y isinvarant,i.e.ctY =Y forallt € Ty;
(iii) the non-autonomous dynamical systeiiX, T1, ), (Y, T2, o), h) is contracting in the
exended sense, i.e. there exist positive numbers Nvasuththat

p(T(t, X1), 7 (L, X2)) < Ne™" p(xX1, X2) (3)

forall x1, x2 € X (h(x1) = h(x2)) and te Ty;
(iv) I'(Y, X) = {y | y :}Y — K(X) is a set-alued g-continuous mapping and(h(y)) = y
forall {y e Y} # 0.

Then

(i) there exists aunique invariant sectiory € I'(Y, X) of the non-autonomous dynamical
system((X, T1, 7), (Y, T2, o), h);

(ii) the non-autonomous dynamical systétX, T1, 7), (Y, T2, o), h) is compactly dissipative
and its Levinson center & y (Y);

(i) Ufr'dg: 9 € (6H 72y} = Jpry forallt € Ty and ye Y;

(iv) if (Y, T2, 0) is a goup dynamical system (i.eT> = §), then the unique invariant
sectiony of the non-autonomous dynamical systefX, T1, ), (Y, T2, 0), h) is one-
valued (i.e.y (y) consists of a single point for anyeyY) and

p(r(t, ), T (t, y(h(x)))) < Ne""'p(x, y (h(x))) (4)
forallx e Xandte T.

Proof. Since he spaceY is compact and invarig, then according tGheorem 2.1the semi-
group dynamical systentY, T, o) can be prolonged to a group set-valued dynamical system
(Y, S, o) (thismeans thai(s,y) =o(s,y) forall (s,y) € T x Y).

Let us denote byr : C(X) x C(X) — Ry the Hausdorff distance onK (X) and by
d: I'(Y, X) x I'(Y, X) — R the function defined by the equality

d(y1, y2) = Sufot(yl(Y), y2(y)). %)
ye
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It is easy to verify that by equalit§p) there is defined a distance éi(Y, X). We will show that
the metric spacél’(Y, X), d) is complete. In fact, letyn} C I'(Y, X) be a sequence satisfying
the condition

asn, m — 4oo andy € Y. From(6) it follows that the sequenden(y)} ¢ K(X) is convergent
in the spacé€K (X), @). We denote byy : Y — K (X) the mapping defined by the equality

y(y) = lim_yn(y) ()

(foranyy € Y). Lete > 0 be an abitrary real number; then according (6) there exists
n(e) € N suchthat

a(7n(Y), ym(¥)) < % ®)

for all n,m > n(g). Passing to the limit asn — 400 and taking into consideratiofr), we
obtain that

a((Y), ¥ (y)) < Z ©)

foralln > n(s) andy € Y.
Let nowy € Y and{yk} — v; then
By (Y, ¥ (¥)) = By (YK)s ¥n(e) (YD) + B(nee) (Yk)s ¥nee) (Y))
+ Bne)y)> YY) < 2d(neeys ¥) + Bne) (YK ¥ne)(W)). (10)

From(9) and(10)it follows that

Bly (W), y(¥)) < g + B ey (V) Vo) (¥)) (11)

and, consequently,

lim supB(y (o). ¥ (¥)) < =
k—+o00 2

Sinceyn) € I'(Y, X), then

+ Ili(m SUPB (¥n(e) (Yk)» Ynee)(Y))- 12)
—+00

|Lm SUPB (¥n(e) (Yk)» Ynee)(Y)) = . ”T BWnee)(Yk)» Yne)(Y) = 0. (13)
SRS — 400

From(12)and(13)we obtain

limsupB(y (). ¥ () < = <e. (14)
k—+o00 2

As ¢ is an arbitrary positive number, then frqi) it follows that

‘ lim By (yk, y(y) =0,
— =400

i.e.y € I'(Y, X). Findly from (9) we obtain thatd(y,, y) — 0 ash — +o0.

Lett € Ti; by S we denote the mapping of (Y, X) to itself defined by the equality
(Sy)y) = 7(t, y((eHty) forallt € T,y € Y andy € I'(Y, X). It is easy to see that
Sy € I'(Y, X), §S° = S*" forallt,7 € T1 andy € I'(Y, X) and, hence{S'}c, forms
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a commutative semi-group. Besides this, from inequal@yand the definition of the metrid,
under the conditions of the theorem, the next inequality follows:

d(S'y1, S'y2) < Ne"'d(y1. 2) (15)
forallt € Ty andy; € I'(Y, X) (i =1, 2). To proveinequality(15)it is sufficient to show that
a(@'yiety). wlya(oly) < NeTtd (. v2) (16)

forally € Y, wherecty :={q e Y |o(t,q) =VY).
Letv € wlyo(oty) be an arbitrary element; then theregis o 'y andxz(y) € y2(q) such
thatv = 7'x2(y). We dhoosexi(y) € y1(q) suchthat

p(X1(y), X2(¥)) < a(y1(@), y2(q)) < d(y1, y2) a7)

(by compactness of;(q) (i = 1, 2), obviously there exists such aa(y) and additionally
h(x1(y)) = h(x2(y)) = q). Then we have

p (I xa(y), Tt%2(y) < Ne ™" p(xa(y), X2(y)) < Ne"'d(y1, y2),

ie. for all v e nlya(o~ly) there existsu = =#'xi(y) € nlyi(c~'y) such that
p(U,v) < Ne'd(y1, y2). This means thaB(r'yi(oc'y), 7ty2(07ty)) < Netd(y1, y2).
Analogously, we can establish the inequaptyrtys(o~ty), 7ty1(cty)) < Ne "t d(y1, y2)
and, consequently (' y1(oty), mlya(oTty)) < Netd(y1, y2) forally € Y andt € Ti.
Thus, we have

d(S'y1, S'y2) < Netd(y1, y2) (18)

forallt € Ty andy, y2 € I'(Y, X). From inequdity (18) it follows that fort large enough
the mapingsS' of the spacd’(Y, X) are contractions, and sin¢§‘}teqpl is commutative there
exids aunique common stationary poiptwhich is an invariant section of a non-autonomous
dynamical systemi(X, Ty, ), (Y, T2, o), h), i.,e.y(Y) C X isan invariant set of the dynamical
system(X, T, f).

Let us writeK = y(Y); thenK is a non-empty compact and invariant set of the dynamical
system(X, T1, 7). From inequdity (3) it follows that

lim p(x'M,K)=0 19)
t——+o0

forall M € K(X) and, consequently, the dynamical systexnT1, ) is compactly dissipative
and its Levinson cented C K. On theother handK C J, because the sek = y(Y) is
compact and invariant, but is a maximal compact invariant set @K, T1, 7). Thus we have
J=y).

LetnowT> = S. Then we vill show that the sey (y) contains a single pointfor anye Y. If
we suppose that this is not true, then therewye Y andxz, X2 € ¥ (Yo) (X1 # X2). Letg; € &y,
(i = 1, 2) be such thag; (S) € J. Then we have

(-t =% (=12 (20)
for allt € T;. Note that from inequdity (3) and equality(20) it follows that
p(X1, X2) = p(r (P1(—1)), 7' (P2(—1))) < Ne"'p(p1(—1), p2(~t)) < Ne™'C  (21)

forallt € T, whereC := supp(¢1(S), $2(S)) : s € S}. Passing to the limit in(21)) ast — 400
we obtainx; = x2. The ontradiction obtained proves our statement.
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Thus, if T2 = S, theunique fixed point € I"(Y, X) of the semi-group of operatof§'};c,
is a single-valued function and, consequently, it is continuous. Finally, ineqyd)itipllows
from (3), becausd(y (h(x))) = (ho y)(h(x)) = h(x) for all x € X. The theorems conpletely
proved. O

Remark 3.3. 1. Under the conditions dfheorem 3.2if (Y, T2, o) is a goup dynamical system
(i.,e. T2 = S), then the unique wariant £ctiony of the non-autonomous dynamical system
((X, T1, ), (Y, T2, 0), h) is one-valued (i.ey(y) consists of a single point for any € Y).
Analogous statements for non-autonomous dynamical systems are known (see, for exiénple, [
Ch.2] and B3)). For the case of semi-group dynamical systéfnl',, o) (i.e. where the mapping
o(t,-) : Y — Yis notinvertible)Theorem 3.2s formulated and proveaf the firsttime in this
paper.

2. If (Y, T2, 0) is a £mi-group dynamical system (i.& = R, or Z.), then the unique
invariant sectiory of the non-autonomous dynamical syst&m, T4, ), (Y, T2, o), h) is multi-
valued (i.e.y (y) contains, generally speaking, more than one point). This is confirmed by the
example lelow, which is a slight modification of an example fro82[ Ch1,p.42-43].

Example3.4. LetY :=[-1, 1] and(Y, Z4, o) be a cascade generated by positive powers of the
odd functiong, defined m [0, 1] in the following way:

-2y, O<y< !
aly) = 1 2

Itis easy to check thai(Y) = Y. Letus putX := R x Y and denote byX, Z,, =) a discete
dynamical system generated by the positive powers of the mapping — X:

uy _ (fu,y
P (y) - < a(y) > (22)

where f(u,y) = 1—10u + %y. Findly, let h = prz : X — Y. From(22)), it follows thath is
ahomomorphism otX, Z., =) onto(Y, Z, o) and, consequently(X, Z , 7), (Y, Z4, o), h)
is anon-autonomous dynamical system. Note that

|(u1, y) — (U2, Y)| = |uz — Uz| = 10P(ug, y) — P(uz, y)I. (23)
From(23), it follows that

IP"(u1, y) = P"(uz, y)| < Ne"""|(ug, y) — (uz, y)| (24)
foralln € Z,, where N’ = 1 andv = In10. By Theorem 3.2there exsts aunique

B-continuous invariant sectioy € I'(Y, X) of the non-autonomous dynamical system
(X, Zy4, ), (Y, Zy,0),h). According to Shawovsky et al. B2, p.43], ¥ (y) is homeomorphic
to the Cantor set foraly € [—1, 1].

Remark 3.5. LetY be atopological spacéyV, p) be a metric spaceéX, h, Y) be a trivial bundle
fiber (this means thaX .= W x Y andh := pr2 : X — Y)and(X, T, =) be a skew-product
dynamical system, i.et := (¢,0) 7(t, (U,y)) = (¢, u,Yy),o(t,y)). ThenTheorem 3.2s
also true, although the spa#eis in general not metrizable.
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4. Discreteinclusions, the ensemble of dynamical systems (collages) and cocycles

Let W be a topological space. Denote (W) the pace of all continuous operators
f : W — W equipped with the compact-open topology. Consider a set of operatarsC (W)
and an ensemble (collage) of discrete dynamical syst¥fs ) s c 4.

A discrete inclusionDI (M) is the name given to (see, for examplg2,p,18]) a set of all
saguenceg(xj} | j = 0} C W suchthat

Xj = finj,l
for somefi; € M (atrajectory oDI(M)), i.e.
Xj = fij fij,l«u fi, Xo all fj, e M.

A bilateral sequencesithename given td{xj} | j € Z} C W a full trajectory ofDI (M) (an
entire trajectory or trajectory af) if Xn+j = fi; Xn+j—1foralln e Z.

Let us consider the set-valued functién: W — K (W) defined by the equalityF (x) :=
{f(x)|f € M}. Then he discrete inclusio®l (M) is equivalent to the difference inclusion

Xj € F(xj—1). (25)

We denote byFy, the set of all trajectories of discrete inclusi@b) (or DI (M)) issuing from
thepointxg € W andF = | J{Fx, | Xo € W}.

Below we will give a new apmach as regards the study of discrete inclusibhéM)
(or difference inclusion(25)). Denote byC(Z,, W) the gace of all continuous mappings
f : Z, — W equipped with the compact-open topology. Denote(6yZ,., X), Zy,0) a
dynamical system of translations (shifts dynamical system or dynamical system of Bek@jtov [
30) onC(Z4, W), i.e.a(k, f) = fxand fx is ak € Z, shift of f (i.e. fx(n) .= f(n + k) for

allneZy).
We may now revrite Eq.(25)in the following way:
X =o)X, (0 2:=C(Zs, M) (26)

wherew € 2 is the operator function defined by the equalityj) := fi,,, forall j € Z.
We denote byg(n, Xp, ®) the solution of Eq(26) issuing fron thepointxg € E at the initial
momentn = 0. Notethat Fy, = {¢(-, X0, @) | w € 2} andF = {¢(-, X0, w) | X0 € W, w € 2},
i.e. DI (M) (or inclusion(25)) is equivalent to the family of non-autonomous Eg6) (w € £2).

From the general pperties of difference equatis it fdlows that the mapping : Z, x W x
2 — W satisfies the follwing conditions:

() ¢(0, Xg, w) = Xg for all (xg, w) € W x §2;
(i) e(n+ 7, X0, ®) = @(N, p(t, X0, w), o (T, w)) foralln, r € Z; and(xg, w) € W x §2;
(iii) the mappingy is continuous;
(iv) foranyn, r € Z; andws, wz € (2 there existswz € {2 suchthat
U, @)U (7, w1) =U N+ 7, w3), (27)
wherew € 2,U(n,0) = ¢(n,-,w) = [[iowK), oK) = fi,(k = 0,1,...,n) and
fio = |dw.
Let W, {2 be two topological spaces an@, T, o) be a semi-group dynamical system 8n

Recall [29] that a tiplet (W, ¢, ({2, T, o)) (or briefly ¢) is cdled a cocycle over(2, T, o)
with the fiberW if ¢ is a maping fromT x W x 2 to W satisfying the following conditions:
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1. ¢(0, X, w) = x for all (X, w) € W x §2;
2.o(n+ 1, X, w) = (N, p(t, X, w), o (t,w)) foralln, t € T and(x, w) € W x £;
3. the mappin@ is continuous.

Let X := W x {2, anddefine the mapping : X x T — X by the equalityr ((u, w),t) :=
(p(t,u,w),o(t,w)) (i.e.m = (p,0)). Then it is easy to check thaX, T, ) is a dynamical
system onX, which is called a skew-product dynamical systen29]; buth = pr : X — 2
is ahomomorphism of X, T, =) onto (2, T, o) and hencd(X, T, =), (2, T, o), h) is anon-
autonomous dynamical system.

Thus, if we hae a cocgle (W, ¢, (2, T,o)) over the dynamical system({2, T, o)
with the fiber W, then there can be constructed a non-autonomous dynamical system
(X, T1,7), (22, T,0),h) (X =W x £), which we will call a hon-autonomous dynamical
system generated by (assated with) the cocycléWw, ¢, (12, T, o)) over({2, T, o).

From the above it follows that evel (M) (respectively, inclusiorf25)) in a natural way
generates a cocyclV, ¢, (12, Z4,0)), where? = C(Zy, M), (2,Z,,0) is a dynamical
system of shifts o2 andg¢(n, X, w) is the solution of Eq(26) issuing fran thepointx € W
at the initial momennh = 0. Thus, we can study inclusig5) (respectivelyDI (M)) in the
framework of the theory of cocycles with discrete time.

Theorem 4.1. Let M be a compact subset of (@) and (W, ¢, (12,Z,,c)) be a cocycle
generated by DIM). Then

(i) 2 = Pero), wherePer(o) is the set of all paodic points of ({2, Z, o) (i.e. w € Pelo)
if there existg € N suchthato (z, w) = w);
(ii) the set(? is compact;
(i) 2isinvariant,i.e.c'Q2 = R forallt € Z,;
(iv) ¢ satisfies the conditio(®7).

Proof. LetY = 2 .= C(Z4, Q) and(Y, Z, o) be a semi-group dynamical system of shifts on
Y. According to the theorem of Tikhonoff (see, for examp®], 2 is compact. We denote by
Per(o) the st of all periodic points of the dynamical systdifd, Z.., o), i.e. Pefo) = {w €

2 :31 € N suchthato (7, w) = w}. We will prove thatPero) = 12, i.e. the set ball periodic
points of 2 is dense in{2. In fact, if v € £2, then d@ote bywy the periodigpoint from Pe(o)
suchthatwy(t) := w(t) forallt = 0,1,...,k — 1. It is easy to see thdtk} — w in 2 (the
convergence irf? is the convergence on compacts fr@m). From the fact estdished above it
follows that {2 is invariant, i.ec'2 = 2. In fact, letw € 2,t € Z, and{wx} C Pelo) be
suchthat{wx} — w. Lettx € N be such that (tx, wx) = wx andtx — +o00. Then here exsts

ko = ko(t) suchthatzi >t for all k > kg and, consequently, we have

wk = o (tk, wk) = o (t, 0 (tk — 1, wk)) (28)

for all k > ko. Sincethe space? is compact we may suppose that the sequdaces — t, wk)}
is convergent. Leb := limy_, 1o o (1 — t, wk); then from equdity (28)we obtainw = o (t, ),
ieoctR=0. O

Remark 4.2. The first statement dfheorem 4.1s a slight generalization of a well-known result
(see, for example3p, Ch.111]).

Let (W, p) be a metric space.
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A mapping f : W — W satisfies the condition of Lipschitz if there exists a constant 0
suchthat p(f (x1), f(X2)) < Lp(X1, X2) for all x1, X2 € W. The smé#est constant with the
above-mentioned property is called the constant of Lipsdhitz) of the mappingf .

A subset of operatora4 < C(W) is said to be generally contracting (contracting in the
extended sense) if there are positive numbgranda < 1 such that

L(fi, o fi, ;00 fi;) < Na"
forall fi,, fi,,..., fi, e Mandn eN.

Example4.3. LetW := CJ[0, 1], and f € C(W) bedefined by the equality
t

3
(fo)® = E/ p(s)ds
0

(t € [0,1] andg € C[O, 1]). It is easy to see thdt(f") = (3", wheref" == f"1o f

(n = 2,3,...). In particular,L(f) = 3,L(f?) = 2 andL(f% = & < 1. Additionally,
L(fM < 2(%)n for all n € N. Thus, the setM = { f} is generally ontracting.

Theorem 4.4. Suppose that the following conditions are fulfilled:

(i) M is a conpact subset of QV);
(i) M is contracting in he extended sense.

Then:

@) 1, := {u e W:asoltion ¢(n, u, w) of Eq.(26)is ddined onZ and ¢(Z, u, w) is relatively
compact} # ¢ forall w € £2, i.e. every Eq(26) admits at least one solution defined @n
with a relatively corpact range of values;

(i) the sets(w € ) and | .= J{l, : w € 2} are compact;
(iii) the set-alued mapy — 1, is upper semi-continuous;
(iv) the family ofcompactdl,, : w € 2} is invariant with respect to the cocydge i.e.

Ute 1g.9) g € (™ (0" 0)} = Ion,
foralln € Z, andw € §2;
(V) p(p(n, ug, w), (N, Uz, ®)) < Ne""p(uy, up) foralln € Z, andw € 2 and w, uz € W,

where N and v are postive numbers from the definition of the contractivity & in the
extended sense;

(vi) if every map fe M is invertible, then:
(@) 1, consists of a single pointy
(b) the mapw — u, is continuous;
(©) ¢(t, Uy, w) = Usn,e) foralln e Z; andw € (2;
(d) p(p(n, u, w), (N, U,, ) < Ne ""p(, u,) foralln € Z; andw € 1.

Proof. LetY = 2 .= C(Z4, Q) and(Y, Z., o) be a semi-group dynamical system of shifts on
Y. ThenY is compact. ByTheorem 4.4Pel(o’) = {2 and{? is compact and invariant.

Let(W, ¢, (12, Z, o)) be acocycle generated By (M) (i.e.¢p(n, u, ®) := U (n, w)u, where
un,w) = ]'[Ezoa)(k) (w € ), (X,Z4, ) be a skew-product system associated with the
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cocycleyp (i.e. X := W x 2 andr = (¢, 0)) and{(X, Zy, w), (Y,Z1,0),h)y(h .= pra: X —
Y) be a non-autonomous dynamical system generated by the cecydialer the conditions of
Theorem 4.4ve have

—vn

p(p(n, uL, w), p(n, Uz, w)) < Ne ""p(ug, uz)

foralln € Z,,u;,u; € Wandw € 2, wherev := —Ina (M anda are positive numbers
from thedéfinition of the contraction of\ in the exteded sense). Now to finish the proof of the
theorem it is suffcient to apply Theorem 3.4see alsdremark 3.3 to the non-autonomous dy-
namical systemi(X, Z, 7), ({2, Z+, o), h) and writel,, := pr1(J,), whereJ is the Levinson
center of the dynamical systetX, Z., 7), J, == J[) h~l(w) andh := pry. O

5. Relation between compact global attractors of skew-product systems, collages and
cocycles

Let (W, p) be a complete metric space and € C(W) be a compact. Denote by the
set-valued mapping defined by the equality
Fu={fu:feM,ueW}

Lemma5.1. The following shttements hold:

(i) the set Ku) is a conpact subset of W;
(ii) the et-valued mapping FW — K (W) is upper semi-continuous.

Proof. Consider tle mgpingG : W x C(W) — W ddfined by the equalityc(u, f) := f(u).
SinceG is continuous (see, for example4, Ch.7]) and M is a conpact subset o€ (W), then
F(u) = G(u, M) is compact too.

Let now{un} — u(unp,u € W), vy € F(un) and{vn} — v. We will show thatv € F(u). In
fact, sincevy, € F(up), then here essts f, € M suchthatv, = fr(un). We can suppose that
the sguence fn} is convergent irC(W), because the set is compact. Le{ f,} — f. Then

v:i= lim Un = lim fn(Un) = lim G(Un, fn) = G(U, f) = f(u) € F(U) O
nN— 400 n— 400 n— 400

Corollary 5.2. Let M € K(W). Then kM) € K(W) (F(M) := {F(u) : u € M}).

Theorem 5.3 ([11]). Let (X, T, =) be a st-valued dynamical system and let there be positive
numbers\ andv suchthat

a((t, x1), 7(t, x2)) < Ne " p(x1, X2) (29)

forall x1, x2 € X and te T. Then(X, T, =) is compactly dissipative.

Theorem 5.4. Suppose the following conditions are fulfilled:

(i) M :={f;i :i € |}is aconpact subset from GN);
(ii) the setM of operators is contracting in the extended sense.

Then the set-valued discrete dynamical systémF) is compactly dissipative.
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Proof. It is easy to verify that
F" = {fi, o fi,,0o---ofijtikelk=12....,nN}={UN w):we

where(? .= C(Z4+, M), U(n, w) = HE:O fiy, = fi, o fi,_;0---0 fi; o fi,, (k) == fj,
(k=1,2,...,n)and fi, == ldw.
Let ' > 0 andv > 0 be condants from the definition of the extended contraction of the
family of operatorsM. We will prove that
a(F"(A), F'(B)) < Ne ""a(A, B) (30)

for all A, B € K(W). Indeed, letv € F"(B). SinceF"(B) = U(n, 2)(B), there exisk, € B
andw € {2 suchthatv = U (n, w)x2. We choose a poink; € A suchthatp(x1, X2) < a(A, B).
Then we have

pU, w)X1,v) = pU (N, w)X1, U (N, w)X2)
< Ne ""p(x2, x1) < Ne ""a(A, B).

Thus, for an arbitrary point € F"(B) there & apointu := U (n, w)x1 € F"(A) suchthat
p(u,v) < Ne "a(A, B)

and, hence,

B(F"(A), F"(B)) < Ne"""a(A, B). (31)
Similarly we have the inequality

B(F"(B), F"(A)) < Ne""a(A, B). (32)

Inequality (30) follows from inequalitieg31) and(32). Now to finish the proof it is enough to
cite Theorem 5.3

Theorem 5.5. Let(W, ¢, (12, T, o)) be a cocyclef? be compactand f T x W :— K(W) be
a mapping defined by the equality
ft,u) =9t u 2 (33)

forallu e Wandte T.
Then the mapping f possesses the following properties:

a. f(O,u)y=uforallu e W;
b. f(t, f(r,u) € f(t+r,u)forallt,z e Tandue W;
c. f: T xW — K(W) isupper semi-continuous, i.e.

lim " B(f(t,u), f(tg,ug)) =0 V(tg, Ug) € T x W,
o

t—tp,u—
d. if the cocycleW, ¢, (12, T, o)) satisfies the follwing condition:
Vt, T € T, up, Uz € W3uz suchthaw (t, ¢ (z, X, u1), U) = ¢(t + 7, X, U3), (34)
then
fg, f(z,u) =ft+r7,u
forallt,r e Tandue W.

Proof. This statement follows directliyom the corresponding definitions.J
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Corollary 5.6. Every cocycléW, ¢, (12, T, o)) with the compact? andsatisfying the condition
(34) generates a gevalueddynamical systertW, T, f), where f: T x W — K (W) is ddiined
by equality(33).

A cocycleg over (2, T, o) with the fiberW is said to be a compactly dissipative one if there
is anon-empty compadf < W suchthat

Jim supfBU . )M, K) | € 2) =0 (35)

foranyM e K(W), whereU (t, o) = ¢(t, -, ®).
The smallest compact sétC W with property(35) is said to be a Levinson center of the
cocycleg.

Theorem 5.7. The followhg affirmations hold:

(i) Let (W, ¢, (12, T, o)) be a cocycle with the compa& and satisfying the conditioi§34).
Then the following sta@ments are equivalent:
(a) the cocycley is compacthdissipative;
(b) the kewproduct dynamical systetiX, T, =) generated by the cocycle is compactly
dissipative;
(c) the set-valed dynamical systertW, T, f) generated by the cocycle is compactly
dissipative.
(i) Let (W, ¢, (12, T, o)) be a compact dissipative cocycdad the following conditions be
fulfilled:
(a) £ is conpact and invariant¢'2 = 2 forallt € T);
(b) the cocycley satisfies conditioi§34).

Then | = pri(J), where J is the Levinson center of the skew-product dynamical system
(X, T, 7) (generated by the cocycd and | is the Levinson center of the set-valued dynamical
systemW, T, ) (generated by the cocyci.

Proof. Let (W, ¢, ({2, T, o)) be a cocycle with the compad? and (X, T, =) (respectively,

(W, T, f)) be the skew-product dynamical system (respectively, set-valued dynamical system)
generated by the cocycle If the cacycle ¢ is compactly dissipative, then the skew-product
dynamical systeniX, T, ) (respectively, the set-valued dynamical sys{é&kh T, f)) will also

be. In fact, ifK € K (W) with property(35), then we have

lim Bx'M,K)=0 (36)
t——+o0
foranyM e K(X), whereK = K x £2. If we sippose tha(36)is not tue, then there exist
e >0, Mg e K(X), {Xn} € Mg and{tp} — +oo(ty € T) suchthat
p(ixn, K) = eo. (37)

Let xn = (Un, @n). Sincethe setMg, then he setMg := pri(Mp) (pri1 : X — W) is compact
too. According to the compadissipativity of the cocycle we can suppose that the sequence
({e(th, up, wp)}) is convergent. Bythe conpactness off? we can suppose that the sequence
{wn} C 02 is convergat too. Writed := limp_ 100 @(th, Un, wn) ando = limp_ 40 @n. Then
from (37) we obtain

p(X, K) > o, (38)
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wherex = (U, @). On theother hand, from equality{35) we have
p(0,K)y=0 (39)

and, hencex = (0,®) € K x 2 = K. The lastinclusion and(38) are contradictory. The
contradiction obtained proves our statement.

Now we will prove that from the compact dissipativity of the skew-product dynamical system
(X, T, ) there follows the compact dissipativity of the cocyglevhichgenerategX, T, 7). In
fact, let(X, T, =) be compactly dissipative antibe its Levinson center. Write := pry(J). It
is clear that the sdtis non-empty and compact. We will show that

Jim  suBU . @)M. 1) | o € 2) =0 (40)

foranyM e K(W). If we suppose thaf40) is not tiue, then there exigly > 0, {tn} — + €
oo(th € T), Mg € K(W), {un} € Mg and{wn} C {2 suchthat

p(@(tn, Un, @n), 1) > eo. (41)

Let us writeMg = Mg x 2 € K(X). Since the skew-product dynamical systéX, T, ) is
compactly dissipative and is its Levinson center, we have

. t a7 _
Jm, per'to, ) = 0
and, consequently,

lim p('xn, J) =0, (42)
t—+4o0

wherex, = (Un, wn) andz"x, = (¢(tn, Un, @n), o (th, @n)). By (42) we can suppose that
the sguence{z™xn} = {(¢(tn, Un, wn), o (tn, wn))} is convergent and that its limit belongs to
J. Let X = liMps 400 Xn = (lIMpos 400 @(th, Un, @n), liMp_ 100 0 (th, wp)) = (0, ®). Then
(0,w) € Jandd € Iz C |, wherelg := pri(Jz) andJ; == J ﬂ(prz)—l(d)). Passing to the
limit in inequality (41)) asn — +o0, we obtain thatli ¢ 1. The @ntradiction obtained proves
our affirmation. Nee that the set = pri1(J) is the least compact subset \bf satisfying the
condition(40). In fact, suppose that is a conpact subset ofV possessing the propers0).
We have

et 1g.0) : g € (0H Mot )} = ls 0. (43)

since he sets) and{? are invariant. From equalit{43) it follows that

= Jllotwy € 2} C

Jtet. 1g,0) :q € 6H ot ), 0 e 2} <
e, 1, 2) =11, 1)

for anyt € T and, hencel < I’. Finally we note that under the condition of the first part of the
theorem the equivalence of conditions b. and c. follows from the equilityu) = ¢(t, u, 2).

Let now (X, T, ) (respectively(W, T, f)) be the skew-product (respectively, set-valued)
dynamical system generated by the cocyckndJ (respectively]) beits Levinson center. We
denote by’ .= pr1(J) and note that from the reasoning above we have

supBUE, oM, 1) =BUE, DM, 1) =8(ft,M),1")=0 44)
wel?
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forall M € K(W) and, consequently, C |’ as the set is the least compact subset\&f with
property(44). On theother hand, from(44) we havel C ¢, 1, 2) = f(, 1) foranyt € T
and hencd C ws(l) C I, wherew(l) = (\i»gU;>t T(z, ). Thus, we obtail” = |. The
theorem is completely proved. O -

Denote by ®@(¢) the set of all full trajectories of the cocyate
Corollary 5.8. Let (W, ¢, (£2, T, o)) be a compactly dissipative cocycle and the following
conditions be fulfilled:

(i) £2is conpact and invariant;
(ii) the cocycley satisfies conditioi§34).

Then I={ue W :3ne &(p), n(0) =uandn(S) is relatively compagt
Proof. This statement follows from the equality= pr1(J) and the invariance of the sét
because := pri(y) € ¢(p)if y € (). 0O

6. Chaotic attractorsof discrete control systems

Theorem 6.1. Let M be a compact subset of (@/). Suppose that the following conditions are
fulfilled:

(i) M is a conpact subset of QN);
(i) M is contracting in he extended sense.

Then the followingtatenents hold:

(i) the cocycleW, ¢, (12, Z4, 0)) (2 := C(Z+, M)) is conpactly dissipative;

(i) if every map fe M is invertible, then | = Perp), wherePeryp) := {u € W : 3t €
N andw € {2 suchthato (t, ) = w ande(t, U, ) = u}, where | is he Levinson center of
the cocyclep.

Proof. LetY = 2 .= C(Z4, Q) and(Y, Z, o) be a semi-group dynamical system of shifts on
Y. According to the theorem of Tikhonoff (see, for examp®{]], Y is compact. Let us denote
by Pefo) .= {w € 2 : It € N suchthato(r, w) = w} the set of all pendic points of the
dynamical systenif?, Z, o). ThenPelo) = 2, i.e. the set of alperiodic points off? is dense
in 2 and{? is invariant éee theproof of Theorem 4.4

Let(W, ¢, (12, Z+, o)) be a cocycle generated By (M) (i.e.¢(n, u, ®) := U(n, w)u, where
U, w) = Hﬂzow(k) (w € ), (X,Z4, ) be a skew-product system associated with the
cocyclep and((X, Z4, 7), (Y, Z4, o), h)y(h := pr2 : X — Y) be a non-autonomous dynamical
system generatkby the caycle ¢. By Theorem 4.4(X, Z,, ) is compactly dissipative and
its Levinson center] is topologically and dynamically isomorphic @2, Z,, o). According
to Theorem5.71 = pri(J). SincePeroc) = {2, thenPerzx) = J and, consequently,
Pelp)=1. O

ThesetSc Wis

(i) nowhere dense, provided that the interior of the closui@iefthe empty set, iicl(S)) = 7;
(ii) totally disconnected, provided that the connected components are single points;
(iii) perfect, provided that it is closed and every pomg Sis the limit of pointsg, € S with

On # P
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The setS ¢ W is called a Cantor set, provided that it is totally disconnected, perfect and
compact.

The subseM of (X, T, ) is called (see, for example€§]) chaoticif the following conditions
hold:

(i) the setM s transitive, i.e. there exists a poinp € X suchthat M = H(xg) :=
{m(t, %) : t € T}
(i) M = Per(r), where Pepr) is the set of all peodic points of(X, T, ).

Recall that a poink € X of the dynamical systerdX, T, ) is called Poisson stable in the
positive diection ifx belongs to itsy-limit setwy == (=0 U=t 7 (7, X).

Theorem 6.2. Suppose that the following conditions are fulfilled:

(i) M is afinite sibset of GW), i.e. M = {f1, fo,..., fm}(m > 2);
(i) M is contracting in he extended sense.

Then the followingtatenent hold:

(i) the kewproductdynamical systetX, T, =) generated by DIM) is compacthdissipative;
(i) if every map fe M is invertible, then:

(a) the Levinson center J of the skew-product dynamical systefnT, =) is a chaotic
Cantor set;

(b) there exists a residual subseg & J (large in the sase of Baire category) consisting
of points that are Poisson stable in the positive direction such that the positive semi-
trajectory of every point g € Jp is dense on J (i.e. Hxg) = J forall xg € Jo);

(iii) the cocycle(W, ¢, (2, Z+,0))(2 := C(Z4+, M)) generated by DIM) is compactly
dissipative;
(iv) the Levinson center | op possesses the following properties:

(@) I = Peng), wherePerp) .= {u € W : 3t € Nandw € {2 suchthato(r,w) =
wande(t, U, w) = u};

(b) I = pr1(J),i.e. | is acontinuous image of the Cantor set J.

Proof. By Theorem 6.1the cayclep generated b{pl (M) is compactly dissip#ve and, hence,
the kew-product dynamical systeriX, T, 7)(X = W x 2,7 = (p,0)) is compactly
dissipative too.

Now we will prove that the Levinson centérof the skew-product dynamical systeiy, , =)
possesses the properties listed in theorem. With this aim, we note th& .= C(Z4, M)
(M = {f1, f2,..., fm}) is topologically isomorphic to¥y, := {0,1,...,m — 1}%+ and,
consequently (see, for exampl28[35]), we have:

(i) £2is a Cantor set;
(i) Pero) = £2;
(iii) there exists a residual subs&y C {2 consisting of points that are Poisson stable in the
positive direction such that *(wg) = 12 for all wg € 2.

By Theorem 4.4he Levinson cented of the skew-product dynamical systeiX, Z,, ) is
dynamically isomorphic t@s2, T, o) and, consequently, it possesses the following properties:

(i) Jis a Cantor set;
(i) Pern) = J;
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(iii) there exists a residual subsdy € J consisting of points that are Poisson stable in the
positive direction such that the positive semi-trajectory of every pajirg Jp is dense on
J.

Now let I be the Levinson center of the cocy@eAccording toTheorem 6.11 = Pel()
and, byTheorem 5.71 = pri(J). O

Remark 6.3. The problem of the existence of compact global attractor®igi1) with finite

M (a collage or iterated function system (IFS)) was studied before in the waifiks3[18] (see
also the bibliography therein). Ir86—818] the staekment close torheorem 6.2was proved.
Namely:

(i) in [3] the firststaement ofTheorem 6.2vas announced and the second statement proved;
(ii) in [6-818] they mnsidered the case wheY¥ is a compact metric space and every map
feM=({f,f...,fn}({ =1,...,m)is contracting (not obligatry invertible). For
this type ofDI (M) they proved the existencd a comgact global attractosd such that for
allu € A and almost allw € {2 (with respect to a céain measure oif?) the tragctory
e U, 0) = UM, o)u (U, o) = [[p_o fir, Gk € {1,...,m}) and fi, := Idw) was

dense inA.

Acknowledgments

The authors would like to thank the anonymous referees for their comments and suggestions
regarding a préminary version of this article.

References

[1] V.M. Alekseev, Symbolic Dynamics, Nauka\bumka, Kiev, 1986. The 11th Mathematical School.

[2] M. Artzrouni, On the convergence of infinite productsmoétrices, Linear Algebra and its Applications 74 (1986)
11-21.

[3] M.F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.

[4] M.F. Barnsley, A.D. Sloan, A better way to compress images, BYTE (13) (1988) 215-223.

[5] W.-J. Beyn, L. Elsner, Infinite products and paracanting matrices, The Electronic Journal of Linear Algebra 2
(1997) 1-8.

[6] N.A. Bobylev, S.V. Emel'yanov, S.K. Korovin, Atictors of discrete controlled systems in metric spaces,
Computational Mathematics andddeling 11 (4) (2000) 321-326. Translatedm Prikladnaya Mathematika i
Informatika (3) (1999) 5-10.

[7] N.A. Bobylev, A.Yu. Zalozhnev, A.Yu. Klykov, Attractors of ensembles of dynamical systems, Automation and
Remote Control 60 (2) (1999) 149-155. Transldtedn Avtomatika i Telemekhanika (2) (1999) 3-11.

[8] V.A. Bondarenko, V.L. Dolnikov, Fractal image cqression by the Barnsley—Sloan method, Automation and
Remote Control 55 (5) (1994) 623-629. Transldtedn Avtomatika i Telemekhanika (5) (1994) 12—20.

[9] N. Bourbaki, Varétés Differentielles et Analitiques (Fascicule dssultats), Herman, Paris, 1971.

[10] R. Bru, L. Elsner, M. Neumann, Convergence of iitérproducts of matrices and inner—outer iteration schemes,
Electronic Transactions on Numerical Analysis 2 (1994) 183—-194.

[11] D.N. Cheban, D.S.&keeh, Global Attractors of Disperse Dynamical Systems. Sigmain@hijs1994.

[12] D.N. Cheban, Global Attractors of Nonautonomoussdpiative Dynamical Systems. Interdisciplinary
Mathematical Sciences 1, World Scientific, River Edge, NJ, 2004, p. 528.

[13] D.N. Cheban, C. Mammana, Asymptotic Stability of Autonomous and Non-Autonomous Discrete Linear
Inclusions, Bulletinul Academiei de Stiinte @publicii Moldova. Matematica 3 (46) (2004) 41-52.

[14] D.N. Cheban, C. Mammana, Absolute Asymptotic Stability of Discrete Linear Inclusions, Bulletinul Academiei de
Stiinte a Republicii Moldova. Matematica 1 (47) (2005) 43—-68.

[15] I. Daubechies, J.C. Lagarias, Sets of matrices rdlhite products of which converge, Linear Algebra and its
Applications 161 (1992) 227-263.



D. Cheban, C. Mammana / Nonlinear Analysis 65 (2006) 1669-1687 1687

[16] L. Elsner, S. Friedland, Norm conditions for convergemf infinite products, Linear Algebra and its Applications
250 (1997) 133-142.

[17] L. Elsner, I. Koltracht, M. Neumann, On the convergerof asynchronous paracontiaos with applications to
tomographic reconstruction from incomplete datiear Algebra and its Applications 130 (1990) 65-82.

[18] S.V. Emel'yanov, S.K. Korovin, N.A. Bobylev, Attragts of control systems, Doklady Mathematics 61 (1) (2000)
91-94.

[19] L. Gurvits, Geanetiical Approach to Some Problems of Control, Obsgion and Lumping, Ph.D. Thesis, Dept. of
Mathematics, Gorky State Univ., USSR, 1985.

[20] L.N. Gurvits, A.M. Zahain, System theoretic and graph theoretic aspects of Markov chains lumping, in: 5th
International Conference on Matatical Statistics, Vilnius, 1989.

[21] L.N. Gurvits, A.M. Zaharin, Lumpability of Markov rcesses and systems theory, in: MTNS, Amsterdam, 1989.

[22] L. Gurvits, Stability of discrete linear inclusi, Linear Algebra and its Applications 231 (1995) 47-85.

[23] D. Husemoller, Fibre Bundles, Springéerlag, New York, Heidelberg, Berlin, 1994.

[24] J.L. Kelley, General Topology, in: Graduate Texts in Manhatics, vol. 27, Springer-Verlag, Berlin, Heidelberg,
New York, 1975.

[25] V.S. Kozyakin, Algebraic insolvability of problem of sflute stability of desynchronized systems, Automation and
Remote Control 51 (6) (1990) 754—759.

[26] A.P. Molchanov, Lyapunov function for nonlinear diser¢ime control systems, Avtomatika i Telemekhanika 6
(1987) 26-35.

[27] V.I. Opoitsev, Stability of Non-Autonomous Systems, Avtomatika i Telemekhanika (10) (1986) 56—63.

[28] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, in: Studies in Advanced Mathematics,
CRC Press, Boca Raton, Florida, 1995.

[29] G.R. Sell, Topological Dynamics and Ordinary feifential Equations, Van Nirand-Reinhold, London, 1971.

[30] B.A. Shcherbakov, Topological Dynamics and Poissotebiity of Solutions of Differential Equations, Kishinev,
Shiiintsa, 1972 (in Russian).

[31] K.S. Sibirskii, A.S. Shube, Semidynamical Systems, Stiintsa, Kishinev 1987 (in Russian).

[32] A.N. Sharkovsky, Yu.L. Maistrenko, E.Yu. RomanenKdifference Equations and The#kpplications, Kluwer
Academic Publisher, Dordrecht, Boston, London, 1993.

[33] J. Stark, Invariant graphs for forced systems, Physica D 109 (1997) 163-179.

[34] A. Vladimirov, L. Elsner, W.-J. Beyn, Stability and paracontractivity of discrete linear inclusion, Linear Algebra
and its Applications 312 (2000) 125-134.

[35] J. de Vries, Elements of Topological Dynamics, in: Mathatics and Its Applications, Vol. 257, Kluwer Academic
Publishers, Dordrecht, Boston, London, 1993.

[36] F. Wirth, On stability of infinite-dimensional discrete inclusions, Journal of Mathematical Systems, Estimations,
and Control 8 (4) (1998) 507-51@p://trick.ntp.springer.de/pub/jmseé&letrieval code 72701 (Full electronic
manuscript).

[37] F. Wirth, The generalized spectral radius and extbnorms, Linear Algebra and its Applications 342 (2002) 17-40.


ftp://trick.ntp.springer.de/pub/jmsec/

	Compact global attractors of discrete inclusions
	Introduction
	Set-valued dynamical systems and their compact global attractors
	Continuous invariant sections of non-autonomous dynamical systems
	Discrete inclusions, the ensemble of dynamical systems (collages) and cocycles
	Relation between compact global attractors of skew-product systems, collages and cocycles
	Chaotic attractors of discrete control systems
	Acknowledgments
	References


