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Abstract

The paper is dedicated to the study of the problem of the existence of compact global attractors of
discrete inclusions and to the description of its structure. We consider a family of continuous mappings of a
metric spaceW into itself, and(W, fi )i∈I is the family of discrete dynamical systems. On the metric space
W we consider a discrete inclusion

ut+1 ∈ F(ut ) (1)

associated withM := { fi : i ∈ I }, whereF(u) = { f (u) : f ∈ M} for all u ∈ W. We give sufficient
conditions (the family of mapsM is contracting in the extended sense) for the existence of a compact
global attractor of(1). If the family M consists of a finite number of maps, then the corresponding compact
global attractor is chaotic. We study this problem in the framework of non-autonomous dynamical systems
(cocyles).
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of this paper is the study of the problem of the existence of compact global attractors
of discrete inclusions and control systems (see, for example, Bobylev et al. [6], Bobylev et al. [7],
Emel’yanov et al. [18] and the references therein). LetW be a metric space,M := { fi : i ∈ I }
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be a family of continuous mappings ofW into itself and(W, fi )i∈I be the family of discrete
dynamical systems, where(W, f ) is a discrete dynamical system generated by positive powers
of a continuous mapf : W → W. On thespaceW we consider a discrete inclusion

ut+1 ∈ F(ut )

associated withM := { fi : i ∈ I } (DI(M)), whereF(u) = { f (u) : f ∈ M} for all u ∈ W.
A solution of the discrete inclusion DI(M) is (see,for example, [6,18,22]) a sequence

{{x j } | j ≥ 0} ⊂ W suchthat

x j = fi j x j −1

for some fi j ∈ M (trajectory ofDI(M)), i.e.

x j = fi j fi j −1 . . . fi1 x0 all fik ∈ M.

We can consider it to be a discrete control problem, where at each moment of timej we can
apply a control from the setM, andDI(M) is the set of possible trajectories of the system.

The problem of the existence of compact global attractors for a discrete inclusion arises in a
number of different areas of mathematics: control theory — Bobylev et al. [6], Bobylev et al. [7],
Emel’yanov et al. [18], Molchanov [26]; linear algebra — Artzrouni [2], Beyn and Elsner [5],
Bru et al. [10], Cheban and Mammana [13,14], Daubechies and Lagarias [15], Elsner and
Friedland [16], Elsner et al. [17], Gurvits [22], Kozyakin [25], Vladimirov et al. [34], Wirth [36,
37]; Markov chains — Gurvits [19], Gurvits and Zaharin [20,21]; iteration processes — Bru
et al. [10], Opoitsev [27]; the Barnsley–Sloan method of fractal image compression — Barnsley
and Sloan [4], Bondarenko and Dolnikov [8] and see also the bibliography therein.

In 1988 Barnsley and Sloan [4] put forward some ideas, based on concepts of the theory
of dynamical systems, for the compression and storage of graphical information. Their method
was called the method of fractal compression of information. They consider a finite set of affine
transformations

M = { fi : i = 1,2, . . . ,m}
( fi : Rd → Rd), i.e. transformations fi of the form fi (u) := Ai u + bi , whereAi are square
matrices of orderd, andu,bi ∈ Rd. These transformations possesses the following properties:

(i) there exists a compactM0 ⊆ Rd suchthat fi (M) ⊆ M0 for all M ∈ K (M0), whereK (M0)

is the set of all compact subsets ofM0;
(ii) | fi (u1)− fi (u2)| ≤ ki |u1 − u2|, whereki ∈ [0,1) and| · | is the norm onRd.

This setM is called an affine collage.
The mappingF : K (M0) → K (M0) defined by the equality

F(M) :=
m⋃

i=1

fi (M)

is called a collage mapping.
We consider an arbitrary collageM (M contains, generally speaking, an infinite number

of mappings f ) on the complete metric spaceW (W is not obligatory compact) and we give
conditions which guarantee the existence of a compact global attractor forM. If M consists of
a finite number of maps, then we prove thatM admits a compact global chaotic attractor. We
study this problem in the framework of non-autonomous dynamical systems (cocyles).
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This paper is organized as follows.
In Section 2 wegive some notions and facts from the theory of set-valued dynamical systems

which we usein our paper.
Section3 is dedicated to the study of upper semi-continuous (generally speaking set-valued)

invariant sections of non-autonomous dynamical systems. They play a very important role in
the study of non-autonomous dynamical systems.We give sufficient conditions guaranteeing
the existence of a unique globally exponentially stable invariant section (Theorem 3.2— the
main result of the paper). Analogous statements for non-autonomous dynamical systems, when
the base dynamical system(Y,T2, σ ) is invertible, are known (see, for example, [12, Ch.2]
and [33]). For the case of the semi-group dynamical system(Y,T2, σ ) (i.e. where the mapping
σ(t, ·) : Y 	→ Y is not invertible)Theorem 3.2is formulated and proved for the firsttime in this
paper.

In Section 4 we give a new approach to the study of discrete inclusions(DI) which is based
on non-autonomous dynamical systems (cocycles). We show that everyDI generates in a natural
way some non-autonomous dynamical system (cocycle), which plays an important role in its
study (see Sections5 and6).

Section5 is dedicated to the study of the relation between the compact global attractor of
the cocycle and the skew-product dynamical system (or set-valued dynamical system) associated
with the given cocycle (seeTheorem 6.2).

In Section 6 we prove that DI generated by a finite number of continuous mappings
f1, f2, . . . , fm (m ≥ 2) admits a compact global chaotic attractor.

2. Set-valued dynamical systems and their compact global attractors

Let (X, ρ) be a complete metric space,S be a group of real(R) or integer(Z) numbers,T
(S+ ⊆ T) be a semi-group of additive groupS. If A ⊆ X and x ∈ X, then we denote by
ρ(x, A) the distancefrom the pointx to the setA, i.e. ρ(x, A) = inf{ρ(x,a) : a ∈ A}. We
denote byB(A, ε) an ε-neighborhood of the setA, i.e. B(A, ε) = {x ∈ X : ρ(x, A) < ε},
and we denote byK (X) the family of all non-empty compact subsets ofX. With every point
x ∈ X and numbert ∈ T we associate a closed compact subsetπ(t, x) ∈ K (X). So, if
π(P, A) = ⋃{π(t, x) : t ∈ P, x ∈ A}(P ⊆ T), then

(i) π(0, x) = x for all x ∈ X;
(ii) π(t2, π(t1, x)) = π(t1 + t2, x) for all x ∈ X;
(iii) lim x→x0,t→t0 β(π(t, x), π(t0, x0)) = 0 for all x0 ∈ X and t0 ∈ T, whereβ(A, B) =

sup{ρ(a, B) : a ∈ A} is a semi-deviation of the setA ⊆ X from the setB ⊆ X.

In this case it is said [31] that a set-valued semi-group dynamical system is defined.
Let T = S and let the following condition be fulfilled:

(i) if p ∈ π(t, x), thenx ∈ π(−t, p) for all x, p ∈ X andt ∈ T.

Then it is said that a set-valued group dynamical system(X,T, π) or a bilateral (two-sided)
dynamical system is defined.

Let T′ ⊂ S(T ⊂ T′). A continuous mappingγx : T → X is called a motion of the set-valued
dynamical system(X,T, π) issuing from thepointx ∈ X at the initial momentt = 0 anddefined
onT′, if

a. γx(0) = x;
b. γx(t2) ∈ π(t2 − t1, γx(t1)) for all t1, t2 ∈ T′ (t2 > t1).
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The set of all motions of(X,T, π), passing through the pointx at the initial momentt = 0 is
denoted byFx(π) andF(π) := ⋃{Fx(π) | x ∈ X} (or simplyF ).

The trajectoryγ ∈ F(π) defined onS is called a full (entire) trajectory of the dynamical
system(X,T, π).

Denote by Φ(π) the set of all full trajectories of the dynamical system(X,T, π) and
Φx(π) := Fx(π)

⋂
Φ(π).

Theorem 2.1 ([31] ). Let (X,T, π) be a semi-group dynamical system and X be a compact and
invariant set (i.e.π t X = X for all t ∈ T, whereπ t := π(t, ·)). Then:

(i) F(π) = Φ(π), i.e. every motionγ ∈ Fx(π) can be extended onS (this means that there
exists γ̃ ∈ Φx(π) suchthat γ̃ (t) = γ (t) for all t ∈ T);

(ii) there exists a group (generally speaking set-valued) dynamical system(X,S, π̃) suchthat
π̃ |T×X = π .

A system (X,T, π) is called [11,12] compactly dissipative if there exists a non-empty
compactK ⊆ X suchthat

lim
t→+∞β(π

t M, K ) = 0;
for all M ∈ K (X).

Let (X,T, π) be compactly dissipative and letK be a compact set attracting every compact
subset ofX. Let us set

J := ω(K ) :=
⋂
t≥0

⋃
τ≥t

πτ K . (2)

It can be shown [11,12] that the setJ defined by equality(2) does not depend on the choice
of the attractorK , but is characterized only by the properties of the dynamical system(X,T, π)
itself. The setJ is called a center of Levinson of the compact dissipative system(X,T, π).

Theorem 2.2 ([11,12] ). If (X,T, π) is a compactly dissipative dynamical system and J is its
center of Levinson, then:

(i) J is invariant, i.e. π t J = J for all t ∈ T;
(ii) J is orbitally stable, i.e. for anyε > 0 there existsδ(ε) > 0 suchthat ρ(x, J) < δ implies

β(xt, J) < ε for all t ≥ 0;
(iii) J is an attractor of the family ofall compact subsets of X;
(iv) J is the maximal compact invariant set of(X,T, π).

3. Continuous invariant sections of non-autonomous dynamical systems

Let X be a metric space andY be a topological space. The set-valued mappingγ : Y → K (X)
is said to be upper semi-continuous (orβ-continuous) if limy→y0 β(γ (y), γ (y0)) = 0 for all
y0 ∈ Y.

Let (X,h,Y) be a fibre bundle [9,23]. The mappingγ : Y → K (X) is called a section
(selector) of the fibre bundle(X,h,Y), if h(γ (y)) = y for all y ∈ Y.

Remark 3.1. Let X := W × Y. Thenγ : Y → X is a section of the fibre bundle(X,h,Y)
(h := pr2 : X → Y) if andonly if γ = (ψ, IdY) whereψ : W → K (W).
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Let (X,T1, π) and (Y,T2, σ ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dynamical systems. The
mappingh : X → Y is called a homomorphism (respectively isomorphism) of the dynamical
system(X,T1, π) on (Y,T2, σ ), if the mappingh is continuous (respectively homeomorphic)
andh(π(x, t)) = σ(h(x), t) (t ∈ T1, x ∈ X).

A triplet 〈(X,T1, π), (Y,T2, σ ),h〉, whereh is ahomomorphism of(X,T1, π) on(Y,T2, σ )

and (X,h,Y) is a locally trivial fibre bundle [9,23], is called a non-autonomous dynamical
system.

A mapping γ : Y → X is called an invariant section of the non-autonomous dynamical
system〈(X,T1, π), (Y,T2, σ ),h〉 if it is a section of the fibre bundle(X,h,Y) andγ (Y) is an
invariant subset of the dynamical system(X,T, π) (or, equivalently,⋃

{π tγ (q) : q ∈ (σ t )−1(σ t y)} = γ (σ t y)

for all t ∈ T nd y ∈ Y).

Theorem 3.2. Let 〈(X,T1, π), (Y,T2, σ ),h〉 be a non-autonomous dynamical system and the
following conditions be fulfilled:

(i) the space Y is compact;
(ii) Y is invariant, i.e.σ t Y = Y forall t ∈ T2;
(iii) the non-autonomous dynamical system〈(X,T1, π), (Y,T2, σ ),h〉 is contracting in the

extended sense, i.e. there exist positive numbers N andν suchthat

ρ(π(t, x1), π(t, x2)) ≤ Ne−νtρ(x1, x2) (3)

for all x1, x2 ∈ X (h(x1) = h(x2)) and t ∈ T1;
(iv) Γ (Y, X) = {γ | γ :}Y → K (X) is a set-valuedβ-continuous mapping and h(γ (y)) = y

for all {y ∈ Y} �= ∅.

Then

(i) there exists aunique invariant sectionγ ∈ Γ (Y, X) of the non-autonomous dynamical
system〈(X,T1, π), (Y,T2, σ ),h〉;

(ii) the non-autonomous dynamical system〈(X,T1, π), (Y,T2, σ ),h〉 is compactly dissipative
and its Levinson center J= γ (Y);

(iii)
⋃{π t Jq : q ∈ (σ t )−1(yt)} = Jσ(t,y) for all t ∈ T1 and y∈ Y ;

(iv) if (Y,T2, σ ) is a group dynamical system (i.e.T2 = S), then the unique invariant
sectionγ of the non-autonomous dynamical system〈(X,T1, π), (Y,T2, σ ),h〉 is one-
valued (i.e.γ (y) consists of a single point for any y∈ Y ) and

ρ(π(t, x), π(t, γ (h(x)))) ≤ Ne−νtρ(x, γ (h(x))) (4)

for all x ∈ X and t ∈ T.

Proof. Since the spaceY is compact and invariant, then according toTheorem 2.1the semi-
group dynamical system(Y,T, σ ) can be prolonged to a group set-valued dynamical system
(Y,S, σ̃ ) (this means that̃σ(s, y) = σ(s, y) for all (s, y) ∈ T × Y).

Let us denote byα : C(X) × C(X) → R+ the Hausdorff distance onK (X) and by
d : Γ (Y, X) × Γ (Y, X) → R+ the function defined by the equality

d(γ1, γ2) := sup
y∈Y

α(γ1(y), γ2(y)). (5)
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It is easy to verify that by equality(5) there is defined a distance onΓ (Y, X). We will show that
the metric space(Γ (Y, X),d) is complete. In fact, let{γn} ⊂ Γ (Y, X) be a sequence satisfying
the condition

d(γn, γm) → 0 (6)

asn,m → +∞ andy ∈ Y. From(6) it follows that the sequence{γn(y)} ⊂ K (X) is convergent
in the space(K (X), α). We denote byγ : Y → K (X) the mapping defined by the equality

γ (y) := lim
n→+∞ γn(y) (7)

(for any y ∈ Y). Let ε > 0 be an arbitrary real number; then according to(6) there exists
n(ε) ∈ N suchthat

α(γn(y), γm(y)) ≤ ε

4
(8)

for all n,m ≥ n(ε). Passing to the limit asm → +∞ and taking into consideration(7), we
obtain that

α(γn(y), γ (y)) ≤ ε

4
(9)

for all n ≥ n(ε) andy ∈ Y.
Let nowy ∈ Y and{yk} → y; then

β(γ (yk), γ (y)) ≤ β(γ (yk), γn(ε)(y))+ β(γn(ε)(yk), γn(ε)(y))

+ β(γn(ε)(y), γ (y)) ≤ 2d(γn(ε), γ )+ β(γn(ε)(yk), γn(ε)(y)). (10)

From(9) and(10) it follows that

β(γ (yk), γ (y)) ≤ ε

2
+ β(γn(ε)(yk), γn(ε)(y)) (11)

and, consequently,

lim sup
k→+∞

β(γ (yk), γ (y)) ≤ ε

2
+ lim sup

k→+∞
β(γn(ε)(yk), γn(ε)(y)). (12)

Sinceγn(ε) ∈ Γ (Y, X), then

lim sup
k→+∞

β(γn(ε)(yk), γn(ε)(y)) = lim
k→+∞ β(γn(ε)(yk), γn(ε)(y)) = 0. (13)

From(12)and(13)we obtain

lim sup
k→+∞

β(γ (yk), γ (y)) ≤ ε

2
< ε. (14)

As ε is an arbitrary positive number, then from(14) it follows that

lim
k→+∞ β(γ (yk), γ (y)) = 0,

i.e.γ ∈ Γ (Y, X). Finally from (9) we obtain thatd(γn, γ ) → 0 asn → +∞.
Let t ∈ T1; by St we denote the mapping ofΓ (Y, X) to itself defined by the equality

(Stγ )(y) = π(t, γ ((σ t )−1y)) for all t ∈ T1, y ∈ Y andγ ∈ Γ (Y, X). It is easy to see that
Stγ ∈ Γ (Y, X), St Sτ = St+τ for all t, τ ∈ T1 andγ ∈ Γ (Y, X) and, hence,{St }t∈T1 forms
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a commutative semi-group. Besides this, from inequality(3) and the definition of the metricd,
under the conditions of the theorem, the next inequality follows:

d(Stγ1, Stγ2) ≤ Ne−νt d(γ1, γ2) (15)

for all t ∈ T1 andγi ∈ Γ (Y, X) (i = 1,2). To proveinequality(15) it is sufficient to show that

α(π tγ1(σ
−t y)), π tγ2(σ

−t y) ≤ Ne−νtd(γ1, γ2) (16)

for all y ∈ Y, whereσ−t y := {q ∈ Y | σ(t,q) = y}.
Let v ∈ π tγ2(σ

−t y) be an arbitrary element; then there isq ∈ σ−t y andx2(y) ∈ γ2(q) such
thatv = π t x2(y). We choosex1(y) ∈ γ1(q) suchthat

ρ(x1(y), x2(y)) ≤ α(γ1(q), γ2(q)) ≤ d(γ1, γ2) (17)

(by compactness ofγi (q) (i = 1,2), obviously there exists such anx1(y) and additionally
h(x1(y)) = h(x2(y)) = q). Then we have

ρ(π t x1(y), π
t x2(y)) ≤ Ne−νtρ(x1(y), x2(y)) ≤ Ne−νtd(γ1, γ2),

i.e. for all v ∈ π tγ2(σ
−t y) there existsu := π t x1(y) ∈ π tγ1(σ

−t y) such that
ρ(u, v) ≤ Ne−νt d(γ1, γ2). This means thatβ(π tγ1(σ

−t y), π tγ2(σ
−t y)) ≤ Ne−νt d(γ1, γ2).

Analogously, we can establish the inequalityβ(π tγ2(σ
−t y), π tγ1(σ

−t y)) ≤ Ne−νt d(γ1, γ2)

and, consequently,α(π tγ1(σ
−t y), π t

λγ2(σ
−t y)) ≤ Ne−νtd(γ1, γ2) for all y ∈ Y and t ∈ T1.

Thus, we have

d(Stγ1, Stγ2) ≤ Ne−νt d(γ1, γ2) (18)

for all t ∈ T1 andγ1, γ2 ∈ Γ (Y, X). From inequality (18) it follows that for t large enough
the mappingsSt of the spaceΓ (Y, X) are contractions, and since{St }t∈T1 is commutative there
exists aunique common stationary pointγ which is an invariant section of a non-autonomous
dynamical system〈(X,T1, π), (Y,T2, σ ),h〉, i.e.γ (Y) ⊂ X is an invariant set of the dynamical
system(X,T, f ).

Let us writeK := γ (Y); thenK is a non-empty compact and invariant set of the dynamical
system(X,T1, π). From inequality (3) it follows that

lim
t→+∞ ρ(π

t M, K ) = 0 (19)

for all M ∈ K (X) and, consequently, the dynamical system(X,T1, π) is compactly dissipative
and its Levinson centerJ ⊆ K . On theother hand,K ⊆ J, because the setK = γ (Y) is
compact and invariant, butJ is a maximal compact invariant set of(X,T1, π). Thus we have
J = γ (Y).

Let nowT2 = S. Then we will show that the setγ (y) contains a single point for anyy ∈ Y. If
wesuppose that this is not true, then there arey0 ∈ Y andx1, x2 ∈ γ (y0) (x1 �= x2). Letφi ∈ Φxi

(i = 1,2) be such thatφi (S) ⊆ J. Then we have

π t (φi (−t)) = xi (i = 1,2) (20)

for all t ∈ T1. Note that from inequality (3) and equality(20) it follows that

ρ(x1, x2) = ρ(π t (φ1(−t)), π t (φ2(−t))) ≤ Ne−νtρ(φ1(−t), φ2(−t)) ≤ Ne−νt C (21)

for all t ∈ T, whereC := sup{ρ(φ1(s), φ2(s)) : s ∈ S}. Passing to the limit in(21)) ast → +∞
we obtainx1 = x2. The contradiction obtained proves our statement.
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Thus, ifT2 = S, theunique fixed pointγ ∈ Γ (Y, X) of the semi-group of operators{St }t∈T1

is a single-valued function and, consequently, it is continuous. Finally, inequality(4) follows
from (3), becauseh(γ (h(x))) = (h ◦ γ )(h(x)) = h(x) for all x ∈ X. The theorem is completely
proved. �

Remark 3.3. 1. Under the conditions ofTheorem 3.2, if (Y,T2, σ ) is a group dynamical system
(i.e. T2 = S), then the unique invariant sectionγ of the non-autonomous dynamical system
〈(X,T1, π), (Y,T2, σ ),h〉 is one-valued (i.e.γ (y) consists of a single point for anyy ∈ Y).
Analogous statements for non-autonomous dynamical systems are known (see, for example, [12,
Ch.2] and [33]). For the case of semi-group dynamical system(Y,T2, σ ) (i.e. where the mapping
σ(t, ·) : Y 	→ Y is not invertible)Theorem 3.2is formulated and proved for the firsttime in this
paper.

2. If (Y,T2, σ ) is a semi-group dynamical system (i.e.T2 = R+ or Z+), then the unique
invariant sectionγ of the non-autonomousdynamical system〈(X,T1, π), (Y,T2, σ ),h〉 is multi-
valued (i.e.γ (y) contains, generally speaking, more than one point). This is confirmed by the
example below, which is a slight modification of an example from [32, Ch.1,p.42–43].

Example 3.4. Let Y := [−1,1] and(Y,Z+, σ ) be a cascade generated by positive powers of the
odd functiong, defined on [0, 1] in the following way:

g(y) =




−2y, 0 ≤ y ≤ 1

2
2(y − 1),

1

2
< y ≤ 1.

It is easy to check thatg(Y) = Y. Let us putX := R × Y and denote by(X,Z+, π) a discrete
dynamical system generated by the positive powers of the mappingP : X → X:

P

(
u
y

)
=

(
f (u, y)
g(y)

)
, (22)

where f (u, y) := 1
10u + 1

2 y. Finally, let h = pr2 : X → Y. From(22)), it follows thath is
ahomomorphism of(X,Z+, π) onto(Y,Z+, σ ) and, consequently,〈(X,Z+, π), (Y,Z+, σ ),h〉
is anon-autonomous dynamical system. Note that

|(u1, y)− (u2, y)| = |u1 − u2| = 10|P(u1, y)− P(u2, y)|. (23)

From(23), it follows that

|Pn(u1, y)− Pn(u2, y)| ≤ Ne−νn|〈u1, y〉 − 〈u2, y〉| (24)

for all n ∈ Z+, whereN = 1 and ν = ln 10. By Theorem 3.2there exists a unique
β-continuous invariant sectionγ ∈ Γ (Y, X) of the non-autonomous dynamical system
〈(X,Z+, π), (Y,Z+, σ ),h〉. According to Sharkovsky et al. [32, p. 43], γ (y) is homeomorphic
to the Cantor set for ally ∈ [−1,1].

Remark 3.5. LetY be a topological space,(W, ρ) be a metric space,(X,h,Y) be a trivial bundle
fiber (this means thatX := W × Y andh := pr2 : X → Y) and(X,T, π) be a skew-product
dynamical system, i.e.π := (ϕ, σ ) π(t, (u, y)) := (ϕ(t,u, y), σ (t, y)). ThenTheorem 3.2is
also true, although the spaceX is in general not metrizable.
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4. Discrete inclusions, the ensemble of dynamical systems (collages) and cocycles

Let W be a topological space. Denote byC(W) the space of all continuous operators
f : W → W equipped with the compact-open topology. Consider a set of operatorsM ⊆ C(W)

and an ensemble (collage) of discrete dynamical systems(W, f ) f ∈M.
A discrete inclusionDI(M) is the name given to (see, for example, [22,6,18]) a set of all

sequences{{x j } | j ≥ 0} ⊂ W suchthat

x j = fi j x j −1

for some fi j ∈ M (a trajectory ofDI(M)), i.e.

x j = fi j fi j −1 . . . fi1 x0 all fik ∈ M.

A bilateral sequence is thename given to{{x j } | j ∈ Z} ⊂ W a full trajectory ofDI(M) (an
entire trajectory or trajectory onZ) if xn+ j = fi j xn+ j −1 for all n ∈ Z.

Let us consider the set-valued functionF : W → K (W) defined by the equalityF(x) :=
{ f (x)| f ∈ M}. Then the discrete inclusionDI(M) is equivalent to the difference inclusion

x j ∈ F(x j −1). (25)

We denote byFx0 the set of all trajectories of discrete inclusion(25)(or DI(M)) issuing from
thepoint x0 ∈ W andF := ⋃{Fx0 | x0 ∈ W}.

Below we will give a new approach as regards the study of discrete inclusionsDI(M)

(or difference inclusion(25)). Denote byC(Z+,W) the space of all continuous mappings
f : Z+ → W equipped with the compact-open topology. Denote by(C(Z+, X),Z+, σ ) a
dynamical system of translations (shifts dynamical system or dynamical system of Bebutov [29,
30]) on C(Z+,W), i.e.σ(k, f ) := fk and fk is ak ∈ Z+ shift of f (i.e. fk(n) := f (n + k) for
all n ∈ Z+).

We may now rewrite Eq.(25) in the following way:

x j +1 = ω( j )x j , (ω ∈ Ω := C(Z+,M)) (26)

whereω ∈ Ω is the operator function defined by the equalityω( j ) := fi j +1 for all j ∈ Z+.
We denote byϕ(n, x0, ω) the solution of Eq.(26) issuing from thepoint x0 ∈ E at the initial
momentn = 0. NotethatFx0 = {ϕ(·, x0, ω) | ω ∈ Ω} andF = {ϕ(·, x0, ω) | x0 ∈ W, ω ∈ Ω},
i.e.DI(M) (or inclusion(25)) is equivalent to the family of non-autonomous Eq.(26) (ω ∈ Ω ).

From the general properties of difference equations it follows that the mappingϕ : Z+ × W×
Ω → W satisfies the following conditions:

(i) ϕ(0, x0, ω) = x0 for all (x0, ω) ∈ W × Ω ;
(ii) ϕ(n + τ, x0, ω) = ϕ(n, ϕ(τ, x0, ω), σ (τ, ω)) for all n, τ ∈ Z+ and(x0, ω) ∈ W × Ω ;
(iii) the mappingϕ is continuous;
(iv) for anyn, τ ∈ Z+ andω1, ω2 ∈ Ω there existsω3 ∈ Ω suchthat

U(n, ω2)U(τ, ω1) = U(n + τ, ω3), (27)

whereω ∈ Ω , U(n, ω) := ϕ(n, ·, ω) = ∏n
k=0ω(k), ω(k) := fik (k = 0,1, . . . ,n) and

fi0 := IdW.

Let W,Ω be two topological spaces and(Ω ,T, σ ) be a semi-group dynamical system onΩ .
Recall [29] that a triplet 〈W, ϕ, (Ω ,T, σ )〉 (or briefly ϕ) is called a cocycle over(Ω ,T, σ )

with the fiberW if ϕ is a mapping fromT × W × Ω to W satisfying the following conditions:
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1. ϕ(0, x, ω) = x for all (x, ω) ∈ W × Ω ;
2. ϕ(n + τ, x, ω) = ϕ(n, ϕ(τ, x, ω), σ (τ, ω)) for all n, τ ∈ T and(x, ω) ∈ W × Ω ;
3. the mappingϕ is continuous.

Let X := W × Ω , anddefine the mappingπ : X × T → X by the equalityπ((u, ω), t) :=
(ϕ(t,u, ω), σ (t, ω)) (i.e. π = (ϕ, σ )). Then it is easy to check that(X,T, π) is a dynamical
system onX, which is called a skew-product dynamical system [1,29]; but h = pr2 : X → Ω
is a homomorphism of(X,T, π) onto (Ω ,T, σ ) and hence〈(X,T, π), (Ω ,T, σ ),h〉 is a non-
autonomous dynamical system.

Thus, if we have a cocycle 〈W, ϕ, (Ω ,T, σ )〉 over the dynamical system(Ω ,T, σ )
with the fiber W, then there can be constructed a non-autonomous dynamical system
〈(X,T1, π), (Ω ,T, σ ),h〉 (X := W × Ω ), which we will call a non-autonomous dynamical
system generated by (associated with) the cocycle〈W, ϕ, (Ω ,T, σ )〉 over(Ω ,T, σ ).

From the above it follows that everyDI(M) (respectively, inclusion(25)) in a natural way
generates a cocycle〈W, ϕ, (Ω ,Z+, σ )〉, whereΩ = C(Z+,M), (Ω ,Z+, σ ) is a dynamical
system of shifts onΩ andϕ(n, x, ω) is the solution of Eq.(26) issuing from thepoint x ∈ W
at the initial momentn = 0. Thus, we can study inclusion(25) (respectively,DI(M)) in the
framework of the theory of cocycles with discrete time.

Theorem 4.1. Let M be a compact subset of C(W) and 〈W, φ, (Ω ,Z+, σ )〉 be a cocycle
generated by DI(M). Then

(i) Ω = Per(σ ), wherePer(σ ) is the set of all periodic points of(Ω ,Z+, σ ) (i.e. ω ∈ Per(σ )
if there existsτ ∈ N suchthatσ(τ, ω) = ω);

(ii) the setΩ is compact;
(iii) Ω is invariant, i.e. σ tΩ = Ω for all t ∈ Z+;
(iv) ϕ satisfies the condition(27).

Proof. Let Y = Ω := C(Z+, Q) and(Y,Z+, σ ) be a semi-group dynamical system of shifts on
Y. According to the theorem of Tikhonoff (see, for example, [24]), Ω is compact. We denote by
Per(σ ) the set of all periodic points of the dynamical system(Ω ,Z+, σ ), i.e. Per(σ ) := {ω ∈
Ω : ∃ τ ∈ N suchthatσ(τ, ω) = ω}. We will prove thatPer(σ ) = Ω , i.e. the set of all periodic
points ofΩ is dense inΩ . In fact, if ω ∈ Ω , then denote byωk the periodicpoint from Per(σ )
suchthatωk(t) := ω(t) for all t = 0,1, . . . , k − 1. It is easy to see that{ωk} → ω in Ω (the
convergence inΩ is the convergence on compacts fromZ+). From the fact established above it
follows thatΩ is invariant, i.e.σ tΩ = Ω . In fact, letω ∈ Ω , t ∈ Z+ and{ωk} ⊂ Per(σ ) be
suchthat{ωk} → ω. Let τk ∈ N be such thatσ(τk, ωk) = ωk andτk → +∞. Then there exists
k0 = k0(t) suchthatτk ≥ t for all k ≥ k0 and, consequently, we have

ωk = σ(τk, ωk) = σ(t, σ (τk − t, ωk)) (28)

for all k ≥ k0. Sincethe spaceΩ is compact we may suppose that the sequence{σ(τk − t, ωk)}
is convergent. Letω := limk→+∞ σ(τk − t, ωk); then from equality (28)weobtainω = σ(t, ω),
i.e.σ tΩ = Ω . �

Remark 4.2. The first statement ofTheorem 4.1is a slight generalization of a well-known result
(see, for example, [35, Ch.III]).

Let (W, ρ) be a metric space.



D. Cheban, C. Mammana / Nonlinear Analysis 65 (2006) 1669–1687 1679

A mapping f : W → W satisfies the condition of Lipschitz if there exists a constantL > 0
suchthat ρ( f (x1), f (x2)) ≤ Lρ(x1, x2) for all x1, x2 ∈ W. The smallest constant with the
above-mentioned property is called the constant of LipschitzL( f ) of the mappingf .

A subset of operatorsM ⊆ C(W) is said to be generally contracting (contracting in the
extended sense) if there are positive numbersN andα < 1 such that

L( fin ◦ fin−1 ◦ · · · ◦ fi1) ≤ Nαn

for all fi1, fi2 , . . . , fin ∈ M andn ∈ N.

Example 4.3. Let W := C[0,1], and f ∈ C(W) bedefined by the equality

( f ϕ)(t) := 3

2

∫ t

0
ϕ(s)ds

(t ∈ [0,1] andϕ ∈ C[0,1]). It is easy to see thatL( f n) = (3
2)

n 1
n! , where f n := f n−1 ◦ f

(n = 2,3, . . .). In particular,L( f ) = 3
2, L( f 2) = 9

8 and L( f 3) = 27
32 < 1. Additionally,

L( f n) ≤ 2(3
4)

n for all n ∈ N. Thus, the setM = { f } is generally contracting.

Theorem 4.4. Suppose that the following conditions are fulfilled:

(i) M is a compact subset of C(W);
(ii) M is contracting in the extended sense.

Then:

(i) Iω := {u ∈ W: a solution ϕ(n,u, ω) of Eq.(26) is defined onZ andϕ(Z,u, ω) is relatively
compact} �= ∅ for all ω ∈ Ω , i.e. every Eq.(26) admits at least one solution defined onZ

with a relatively compact range of values;
(ii) the sets Iω(ω ∈ Ω) and I := ⋃{Iω : ω ∈ Ω} are compact;
(iii) the set-valued mapω → Iω is upper semi-continuous;
(iv) the family ofcompacts{Iω : ω ∈ Ω} is invariant with respect to the cocycleϕ, i.e.⋃

{ϕ(n, Iq,q) : q ∈ (σ n)−1(σ nω)} = Iσnω

for all n ∈ Z+ andω ∈ Ω ;
(v) ρ(ϕ(n,u1, ω), ϕ(n,u2, ω)) ≤ Ne−νnρ(u1,u2) for all n ∈ Z+ andω ∈ Ω and u1,u2 ∈ W,

whereN and ν are positive numbers from the definition of the contractivity ofM in the
extended sense;

(vi) if every map f∈ M is invertible, then:

(a) Iω consists of a single point uω;
(b) the mapω → uω is continuous;
(c) ϕ(t,uω, ω) = uσ(n,ω) for all n ∈ Z+ andω ∈ Ω ;
(d) ρ(ϕ(n,u, ω), ϕ(n,uω, ω)) ≤ Ne−νnρ(u,uω) for all n ∈ Z+ andω ∈ Ω .

Proof. Let Y = Ω := C(Z+, Q) and(Y,Z+, σ ) be a semi-group dynamical system of shifts on
Y. ThenY is compact. ByTheorem 4.4, Per(σ ) = Ω andΩ is compact and invariant.

Let 〈W, ϕ, (Ω ,Z+, σ )〉 be a cocycle generated byDI(M) (i.e.ϕ(n,u, ω) := U(n, ω)u, where
U(n, ω) = ∏n

k=0ω(k) (ω ∈ Ω )), (X,Z+, π) be a skew-product system associated with the
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cocycleϕ (i.e. X := W × Ω andπ := (ϕ, σ )) and〈(X,Z+, π), (Y,Z+, σ ),h〉(h := pr2 : X →
Y) be a non-autonomous dynamical system generated by the cocycleϕ. Under the conditions of
Theorem 4.4we have

ρ(ϕ(n,u1, ω), ϕ(n,u2, ω)) ≤ Ne−νnρ(u1,u2)

for all n ∈ Z+,u1,u2 ∈ W andω ∈ Ω , whereν := − lnα (N andα are positive numbers
from thedefinition of the contraction ofM in the extended sense). Now to finish the proof of the
theorem it is sufficient toapplyTheorem 3.2(see alsoRemark 3.5) to the non-autonomous dy-
namical system〈(X,Z+, π), (Ω ,Z+, σ ),h〉 and writeIω := pr1(Jω), whereJ is the Levinson
center of the dynamical system(X,Z+, π), Jω := J

⋂
h−1(ω) andh := pr2. �

5. Relation between compact global attractors of skew-product systems, collages and
cocycles

Let (W, ρ) be a complete metric space andM ⊆ C(W) be a compact. Denote byF the
set-valued mapping defined by the equality

F(u) := { f (u) : f ∈ M,u ∈ W}.

Lemma 5.1. The following statements hold:

(i) the set F(u) is a compact subset of W;
(ii) the set-valued mapping F: W → K (W) is upper semi-continuous.

Proof. Consider the mappingG : W × C(W) → W defined by the equalityG(u, f ) := f (u).
SinceG is continuous (see, for example, [24, Ch.7]) andM is a compact subset ofC(W), then
F(u) = G(u,M) is compact too.

Let now{un} → u(un,u ∈ W), vn ∈ F(un) and{vn} → v. We will show thatv ∈ F(u). In
fact, sincevn ∈ F(un), then there exists fn ∈ M suchthatvn = fn(un). We can suppose that
the sequence{ fn} is convergent inC(W), because the setM is compact. Let{ fn} → f . Then

v := lim
n→+∞ vn = lim

n→+∞ fn(vn) = lim
n→+∞ G(un, fn) = G(u, f ) = f (u) ∈ F(u). �

Corollary 5.2. Let M ∈ K (W). Then F(M) ∈ K (W) (F(M) := {F(u) : u ∈ M}).

Theorem 5.3 ([11] ). Let (X,T, π) be a set-valued dynamical system and let there be positive
numbersN andν suchthat

α(π(t, x1), π(t, x2)) ≤ Ne−νtρ(x1, x2) (29)

for all x1, x2 ∈ X and t ∈ T. Then(X,T, π) is compactly dissipative.

Theorem 5.4. Suppose the following conditions are fulfilled:

(i) M := { fi : i ∈ I } is a compact subset from C(W);
(ii) the setM of operators is contracting in the extended sense.

Then the set-valued discrete dynamical system(W, F) is compactly dissipative.
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Proof. It is easy to verify that

Fn = { fin ◦ fin−1 ◦ · · · ◦ fi1 : i k ∈ I (k = 1,2, . . . ,n)} = {U(n, ω) : ω ∈ Ω},
whereΩ := C(Z+,M), U(n, ω) := ∏n

k=0 fik = fin ◦ fin−1 ◦ · · · ◦ fi1 ◦ fio , ω(k) := fik
(k = 1,2, . . . ,n) and fi0 := IdW.

Let N > 0 andν > 0 be constants from the definition of the extended contraction of the
family of operatorsM. We will prove that

α(Fn(A), Fn(B)) ≤ Ne−νnα(A, B) (30)

for all A, B ∈ K (W). Indeed, letv ∈ Fn(B). SinceFn(B) = U(n,Ω)(B), there existx2 ∈ B
andω ∈ Ω suchthatv = U(n, ω)x2. We choose a pointx1 ∈ A suchthatρ(x1, x2) ≤ α(A, B).
Then we have

ρ(U(n, ω)x1, v) = ρ(U(n, ω)x1,U(n, ω)x2)

≤ Ne−νnρ(x2, x1) ≤ Ne−νnα(A, B).

Thus, for an arbitrary pointv ∈ Fn(B) there is apointu := U(n, ω)x1 ∈ Fn(A) suchthat

ρ(u, v) ≤ Ne−νnα(A, B)

and, hence,

β(Fn(A), Fn(B)) ≤ Ne−νnα(A, B). (31)

Similarly we have the inequality

β(Fn(B), Fn(A)) ≤ Ne−νnα(A, B). (32)

Inequality(30) follows from inequalities(31) and(32). Now to finish the proof it is enough to
cite Theorem 5.3.

Theorem 5.5. Let 〈W, φ, (Ω ,T, σ )〉 be a cocycle,Ω be compact and f: T × W :→ K (W) be
a mapping defined by the equality

f (t,u) = φ(t,u,Ω) (33)

for all u ∈ W and t ∈ T.
Then the mapping f possesses the following properties:

a. f (0,u) = u for all u ∈ W;
b. f (t, f (τ,u)) ⊆ f (t + τ,u) for all t , τ ∈ T and u∈ W;
c. f : T × W → K (W) is upper semi-continuous, i.e.

lim
t→t0,u→u0

β( f (t,u), f (t0,u0)) = 0 ∀(t0,u0) ∈ T × W;
d. if the cocycle〈W, φ, (Ω ,T, σ )〉 satisfies the following condition:

∀t, τ ∈ T,u1,u2 ∈ W ∃u3 suchthatφ(t, φ(τ, x,u1),u2) = φ(t + τ, x,u3), (34)

then

f (t, f (τ,u)) = f (t + τ,u)

for all t , τ ∈ T and u∈ W.

Proof. This statement follows directlyfrom the corresponding definitions.�



1682 D. Cheban, C. Mammana / Nonlinear Analysis 65 (2006) 1669–1687

Corollary 5.6. Every cocycle〈W, φ, (Ω ,T, σ )〉 with the compactΩ andsatisfying the condition
(34)generates a set-valueddynamical system(W,T, f ), where f : T × W → K (W) is defined
byequality(33).

A cocycleϕ over(Ω ,T, σ ) with the fiberW is said to be a compactly dissipative one if there
is anon-empty compactK ⊆ W suchthat

lim
t→+∞ sup{β(U(t, ω)M, K ) | ω ∈ Ω} = 0 (35)

for anyM ∈ K (W), whereU(t, ω) := ϕ(t, ·, ω).
The smallest compact setI ⊆ W with property(35) is said to be a Levinson center of the

cocycleϕ.

Theorem 5.7. The following affirmations hold:

(i) Let 〈W, φ, (Ω ,T, σ )〉 be a cocycle with the compactΩ and satisfying the condition(34).
Then the following statements are equivalent:
(a) the cocycleϕ is compactlydissipative;
(b) the skew-product dynamical system(X,T, π) generated by the cocycleϕ is compactly

dissipative;
(c) the set-valued dynamical system(W,T, f ) generated by the cocycleϕ is compactly

dissipative.
(ii) Let 〈W, φ, (Ω ,T, σ )〉 be a compact dissipative cocycleand the following conditions be

fulfilled:
(a) Ω is compact and invariant (σ tΩ = Ω for all t ∈ T);
(b) the cocycleϕ satisfies condition(34).

Then I = pr1(J), where J is the Levinson center of the skew-product dynamical system
(X,T, π) (generated by the cocycleϕ) and I is the Levinson center of the set-valued dynamical
system(W,T, f ) (generated by the cocycleϕ).

Proof. Let 〈W, φ, (Ω ,T, σ )〉 be a cocycle with the compactΩ and (X,T, π) (respectively,
(W,T, f )) be the skew-product dynamical system (respectively, set-valued dynamical system)
generated by the cocycleϕ. If the cocycle ϕ is compactly dissipative, then the skew-product
dynamical system(X,T, π) (respectively, the set-valued dynamical system(W,T, f )) will also
be. In fact, ifK ∈ K (W) with property(35), then we have

lim
t→+∞β(π

t M̃, K̃ ) = 0 (36)

for any M̃ ∈ K (X), whereK̃ := K × Ω . If we suppose that(36) is not true, then there exist
ε > 0, M̃0 ∈ K (X), {xn} ⊆ M̃0 and{tn} → +∞(tn ∈ T) suchthat

ρ(π t
nxn, K̃ ) ≥ ε0. (37)

Let xn = (un, ωn). Sincethe setM̃0, then the setM0 := pr1(M̃0) (pr1 : X → W) is compact
too. According to the compactdissipativity of the cocycleϕ we can suppose that the sequence
({ϕ(tn,un, ωn)}) is convergent. Bythe compactness ofΩ we can suppose that the sequence
{ωn} ⊆ Ω is convergent too. Writeū := limn→+∞ ϕ(tn,un, ωn) andω̄ := limn→+∞ ωn. Then
from (37)weobtain

ρ(x̄, K̃ ) ≥ ε0, (38)
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wherex̄ := (ū, ω̄). On theother hand, from equality(35)we have

ρ(ū, K ) = 0 (39)

and, hence,̄x = (ū, ω̄) ∈ K × Ω = K̃ . The lastinclusion and(38) are contradictory. The
contradiction obtained proves our statement.

Now we will prove that from the compact dissipativity of the skew-product dynamical system
(X,T, π) there follows the compact dissipativity of the cocycleϕ, whichgenerates(X,T, π). In
fact, let(X,T, π) be compactly dissipative andJ be its Levinson center. WriteI := pr1(J). It
is clear that the setI is non-empty and compact. We will show that

lim
t→+∞ sup{β(U(t, ω)M, I ) | ω ∈ Ω} = 0 (40)

for any M ∈ K (W). If we suppose that(40) is not true, then there existε0 > 0, {tn} → + ∈
∞(tn ∈ T),M0 ∈ K (W), {un} ⊆ M0 and{ωn} ⊆ Ω suchthat

ρ(ϕ(tn,un, ωn), I ) ≥ ε0. (41)

Let us writeM̃0 = M0 × Ω ∈ K (X). Since the skew-product dynamical system(X,T, π) is
compactly dissipative andJ is its Levinson center, we have

lim
t→+∞β(π

t M̃0, J) = 0

and, consequently,

lim
t→+∞ ρ(π

t xn, J) = 0, (42)

wherexn := (un, ωn) andπ tn xn = (ϕ(tn,un, ωn), σ (tn, ωn)). By (42) we can suppose that
the sequence{π tnxn} = {(ϕ(tn,un, ωn), σ (tn, ωn))} is convergent and that its limit belongs to
J. Let x̄ := limn→+∞ xn = (limn→+∞ ϕ(tn,un, ωn), limn→+∞ σ(tn, ωn)) := (ū, ω̄). Then
(ū, ω̄) ∈ J andū ∈ Iω̄ ⊆ I , whereIω̄ := pr1(Jω̄) and Jω̄ := J

⋂
(pr2)

−1(ω̄). Passing to the
limit in inequality (41)) asn → +∞, weobtain thatū �∈ I . The contradiction obtained proves
our affirmation. Note that the setI = pr1(J) is the least compact subset ofW satisfying the
condition(40). In fact, suppose thatI ′ is a compact subset ofW possessing the property(40).
We have⋃

{ϕ(t, Iq, ω) : q ∈ (σ t )−1(σ (t, ω))} = Iσ(t,ω), (43)

since the setsJ andΩ are invariant. From equality(43) it follows that

I =
⋃

{Iσ(t,ω) : ω ∈ Ω} ⊆⋃
{ϕ(t, Iq, ω) : q ∈ (σ t )−1(σ (t, ω)), ω ∈ Ω} ⊆

ϕ(t, I ,Ω) = f (t, I )

for anyt ∈ T and, hence,I ⊆ I ′. Finally we note that under the condition of the first part of the
theorem the equivalence of conditions b. and c. follows from the equalityf (t,u) = ϕ(t,u,Ω).

Let now (X,T, π) (respectively,(W,T, f )) be the skew-product (respectively, set-valued)
dynamical system generated by the cocycleϕ andJ (respectively,I ) beits Levinson center. We
denote byI ′ := pr1(J) and note that from the reasoning above we have

sup
ω∈Ω

β(U(t, ω)M, I ′) = β(U(t,Ω)M, I ′) = β( f (t,M), I ′) = 0 (44)
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for all M ∈ K (W) and, consequently,I ⊆ I ′, as the setI is the least compact subset ofW with
property(44). On theother hand, from(44) we haveI ⊆ ϕ(t, I ,Ω) = f (t, I ) for any t ∈ T

and henceI ⊆ ω f (I ) ⊆ I ′, whereω(I ) := ⋂
t≥0

⋃
τ≥t f (τ, I ). Thus, we obtainI ′ = I . The

theorem is completely proved.�

Denote byΦ(ϕ) the set of all full trajectories of the cocycleϕ.

Corollary 5.8. Let 〈W, φ, (Ω ,T, σ )〉 be a compactly dissipative cocycle and the following
conditions be fulfilled:

(i) Ω is compact and invariant;
(ii) the cocycleϕ satisfies condition(34).

Then I = {u ∈ W : ∃η ∈ Φ(ϕ), η(0) = u andη(S) is relatively compact}.
Proof. This statement follows from the equalityI = pr1(J) and the invariance of the setJ,
becauseη := pr1(γ ) ∈ Φ(ϕ) if γ ∈ Φ(π). �

6. Chaotic attractors of discrete control systems

Theorem 6.1. LetM be a compact subset of C(W). Suppose that the following conditions are
fulfilled:

(i) M is a compact subset of C(W);
(ii) M is contracting in the extended sense.

Then the followingstatements hold:

(i) the cocycle〈W, ϕ, (Ω ,Z+, σ )〉 (Ω := C(Z+,M)) is compactly dissipative;
(ii) if every map f ∈ M is invertible, then I = Per(ϕ), wherePer(ϕ) := {u ∈ W : ∃τ ∈

N andω ∈ Ω suchthatσ(τ, ω) = ω andϕ(τ,u, ω) = u}, where I is the Levinson center of
the cocycleϕ.

Proof. Let Y = Ω := C(Z+, Q) and(Y,Z+, σ ) be a semi-group dynamical system of shifts on
Y. According to the theorem of Tikhonoff (see, for example, [24]), Y is compact. Let us denote
by Per(σ ) := {ω ∈ Ω : ∃τ ∈ N suchthatσ(τ, ω) = ω} the set of all periodic points of the
dynamical system(Ω ,Z+, σ ). ThenPer(σ ) = Ω , i.e. the set of allperiodic points ofΩ is dense
in Ω andΩ is invariant (see theproof ofTheorem 4.4).

Let 〈W, ϕ, (Ω ,Z+, σ )〉 be a cocycle generated byDI(M) (i.e.ϕ(n,u, ω) := U(n, ω)u, where
U(n, ω) = ∏n

k=oω(k) (ω ∈ Ω )), (X,Z+, π) be a skew-product system associated with the
cocycleϕ and〈(X,Z+, π), (Y,Z+, σ ),h〉(h := pr2 : X → Y) be a non-autonomous dynamical
system generated by the cocycleϕ. By Theorem 4.4, (X,Z+, π) is compactly dissipative and
its Levinson centerJ is topologically and dynamically isomorphic to(Ω ,Z+, σ ). According
to Theorem 5.7, I = pr1(J). Since Per(σ ) = Ω , then Per(π) = J and, consequently,
Per(ϕ) = I . �

The setS ⊂ W is

(i) nowhere dense, provided that the interior of the closure ofS is the empty set, int(cl(S)) = ∅;
(ii) totally disconnected, provided that the connected components are single points;
(iii) perfect, provided that it is closed and every pointp ∈ S is the limit of pointsqn ∈ S with

qn �= p.
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The setS ⊂ W is called a Cantor set, provided that it is totally disconnected, perfect and
compact.

The subsetM of (X,T, π) is called (see, for example, [28]) chaoticif the following conditions
hold:

(i) the set M is transitive, i.e. there exists a pointx0 ∈ X such that M = H (x0) :=
{π(t, x0) : t ∈ T};

(ii) M = Per(π), where Per(π) is the set of all periodic points of(X,T, π).

Recall that a pointx ∈ X of the dynamical system(X,T, π) is called Poisson stable in the
positive direction if x belongs to itsω-limit setωx := ⋂

t≥0
⋃
τ≥t π(τ, x).

Theorem 6.2. Suppose that the following conditions are fulfilled:

(i) M is a finite subset of C(W), i.e. M := { f1, f2, . . . , fm}(m ≥ 2);
(ii) M is contracting in the extended sense.

Then the followingstatement hold:

(i) the skew-product dynamical system(X,T, π) generated by DI(M) is compactlydissipative;
(ii) if every map f∈ M is invertible, then:

(a) the Levinson center J of the skew-product dynamical system(X,T, π) is a chaotic
Cantor set;

(b) there exists a residual subset J0 ⊆ J (large in the sense of Baire category) consisting
of points that are Poisson stable in the positive direction such that the positive semi-
trajectory of every point x0 ∈ J0 is dense on J (i.e. H(x0) = J for all x0 ∈ J0);

(iii) the cocycle〈W, ϕ, (Ω ,Z+, σ )〉(Ω := C(Z+,M)) generated by DI(M) is compactly
dissipative;

(iv) the Levinson center I ofϕ possesses the following properties:
(a) I = Per(ϕ), wherePer(ϕ) := {u ∈ W : ∃τ ∈ N and ω ∈ Ω suchthat σ(τ, ω) =

ω andϕ(τ,u, ω) = u};
(b) I = pr1(J), i.e. I is a continuous image of the Cantor set J .

Proof. By Theorem 6.1, the cocycleϕ generated byDI(M) is compactly dissipative and, hence,
the skew-product dynamical system(X,T, π)(X := W × Ω , π := (ϕ, σ )) is compactly
dissipative too.

Now we will prove that the Levinson centerJ of the skew-product dynamical system(X, , π)
possesses the properties listed in thetheorem. With this aim, we note thatΩ := C(Z+,M)

(M := { f1, f2, . . . , fm}) is topologically isomorphic toΣm := {0,1, . . . ,m − 1}Z+ and,
consequently (see, for example, [28,35]), we have:

(i) Ω is a Cantor set;
(ii) Per(σ ) = Ω ;
(iii) there exists a residual subsetΩ0 ⊂ Ω consisting of points that are Poisson stable in the

positive direction such thatH +(ω0) = Ω for all ω0 ∈ Ω0.

By Theorem 4.4the Levinson centerJ of the skew-product dynamical system(X,Z+, π) is
dynamically isomorphic to(Ω ,T, σ ) and, consequently, it possesses the following properties:

(i) J is a Cantor set;
(ii) Per(π) = J;
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(iii) there exists a residual subsetJ0 ⊆ J consisting of points that are Poisson stable in the
positive direction such that the positive semi-trajectory of every pointx0 ∈ J0 is dense on
J.

Now let I be the Levinson center of the cocycleϕ. According toTheorem 6.1, I = Per(ϕ)
and, byTheorem 5.7, I = pr1(J). �

Remark 6.3. The problem of the existence of compact global attractors forDI(M) with finite
M (a collage or iterated function system (IFS)) was studied before in the works [3,6–8,18] (see
also the bibliography therein). In [3,6–8,18] the statement close toTheorem 6.2was proved.
Namely:

(i) in [3] the firststatement ofTheorem 6.2was announced and the second statement proved;
(ii) in [ 6–8,18] they considered the case whereW is a compact metric space and every map

f ∈ M = { f1, f2, . . . , fm} (i = 1, . . . ,m) is contracting (not obligatory invertible). For
this type ofDI(M) they proved the existence of a compact global attractorA such that for
all u ∈ A and almost allω ∈ Ω (with respect to a certain measure onΩ ) the trajectory
ϕ(n,u, ω) = U(n, ω)u (U(n, ω) := ∏n

k=0 fik , (i k ∈ {1, . . . ,m}) and fi0 := IdW) was
dense inA.
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