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Abstract

A regime-switching model to describe the exchange rate dynamics is derived as solution to a stochastic
control problem. We assume exchange rates evolve according to some macroeconomic variables
(fundamental) whose dynamics could be described by a Brownian motion with a state-dependent drift.
The local Monetary Authority is assumed to intervene influencing the evolution of the fundamental, causing
the exchange rate to switch from a depreciating to an appreciating regime (and vice versa). We assume the
behaviour of the Monetary Authority can be modeled using an optimal control framework where the state
variable is represented by the fundamental. The solution of the model allows the determination of an
endogenous tolerance band within which the exchange rate freely fluctuates.

Keywords: long swings; stochastic control; monetary authorities’ intervention; time-consistent policy

1. Introduction

Modeling exchange rate dynamics has been a major goal of scholars and practitioners. Two main
approaches have been used in the recent literature to study exchange rate dynamics: the Markov
Switching Model (MSM) and the Random Walk Hypothesis (RWH).
The power of the MSM for exchange rate modeling was first demonstrated by Engel and

Hamilton (1990) and Engel (1994), who were able to identify the presence of long swings in
exchange rates. Using an econometric approach, they decompose a non-stationary time series into
a sequence of stochastic segmented time trends with two regimes (states). The mean of the
exchange rate changes may vary across regimes allowing the identification of long swings.
Evidence of long swings behavior in exchange rates have also been reported in Evans and

Lewis (1995), Marsh (2000), Bollen et al. (2000), Dewachter (2001) and Clarida et al. (2003),
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showing that MSM is able to describe the exchange rate dynamics, but it is unstable over time and
not suitable for forecasting.
The RWH was first introduced by Meese and Rogoff (1983) evidencing how the random walk

forecasts outperform the results obtained using structural exchange rate models. More recent
studies by Meese and Rose (1991), MacDonald and Taylor (1994), Chinn and Meese (1995),
MacDonald (1999) and Cheung et al. (2005) and Cheung and Erlandsson (2005) have also
reported the inadequacy of traditional exchange rate models, structural and time-series models, to
provide accurate forecasts of exchange rates. However, the RWH remains unsatisfactory, from an
economic point of view, as it ignores the impact of the fundamental.
We believe that ‘long swings in the exchange rate pose important challenges for existing theory’

(Engel and Hamilton, 1990, p. 689), hence the presence of a long-swinging behavior has important
implications for modeling exchange rate dynamics and forces the investigation of what factors
may lead to such switching dynamics. Kaminsky (1993), for example, shows that a move from a
recessive to an expansionary monetary policy increases the exchange rate depreciation resulting in
long swings.
Evans and Lewis (1995) assume that exchange rate switches between appreciating and

depreciating regimes are incorporated into rational traders’ forecasts of the future exchange rate.
They use the monetary model and assume that the fundamental switches between a depreciating
regime and an appreciating one. They also introduce jumps occurring every time a switch of the
fundamental occurs; hence, exchange rate dynamics are described by a sequence of mixed jump
processes.
The aim of this paper is to capture the swinging behavior of the exchange rate and to provide an

economic explanation for it. Exchange rate is too important to be left to the market and hence
Monetary Authorities (MMAA) have frequently, and at times, forcefully, intervened using
monetary policy instruments to influence the path of their respective currencies. In this context,
MMAA’s interventions are required to keep exchange rates in line with their long-run fundamental
value. The fact that most Central Banks attempt to manage their exchange rates stresses an
important question, i.e. ‘what role can they play in achieving the desired exchange rate goal?’.
We assume that domestic MMAA may control the evolution of the fundamental; hence,

exchange rate dynamics could be better described by a managed floating regime. This assumption
allows the use of a stochastic optimal control approach to model MMAA’s interventions.
Given that in the long run the fundamental matters (MacDonald, 1999; Mark, 1995), its

dynamics could be described by a stochastic differential equation. Following Krugman (1991,
1992), we assume that the exchange rate is a nonlinear function of the fundamental and MMAA
want to keep it not too far from its long-run equilibrium level. This may result in changes of
monetary policies, which may cause a change of the instantaneous drift of the fundamental
bringing it closer to its equilibrium level and, at the same time, producing a switch in regime: from
a depreciating one (regime 1) to an appreciating one (regime 2), and vice versa. The switching
points are optimally determined as solution of the stochastic control problem. We also contribute
to the re-examination of the monetary model in a time-varying coefficients context, showing that
regime-switching properties provide substantial explanatory power.
A first validation of the proposed model is obtained using the monthly D-Mark/US-dollar

exchange rate over the period 1973–2005. Evidence of regime switches for D-Mark/US-dollar is
provided.
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The paper is structured as follows: Section 2 presents the stochastic control approach and its
solution; Section 3 reports the estimation of the model based on the Method of Simulated
Moments and the statistics for the estimated parameters; Section 4 provides some concluding
remarks.

2. The theoretical model

We assume the exchange rate is a nonlinear function of the fundamental whose dynamics are
determined by a set of macroeconomic variables and policy instruments. MMAA set a long-run
equilibrium level for the fundamental. They monitor the dynamics of the current fundamental in
order to avoid its ‘undesired’ changes.
In this context, we define an optimal control model that describes MMAA’s behavior. The

control variable is represented by the drift of the process used to model the fundamental’s
dynamics.

2.1. The exchange rate

According to the standard flexible price monetary model, the spot exchange rate at time t is
described by

st dt ¼ ft dtþ lEt½dst �; l > 0; ð1Þ
where st is the logarithm of the exchange rate defined as unit of domestic currency per unit of the
reference currency; ft denotes the logarithm of a set of macroeconomic variables ( fundamental)
driven by a Brownian motion with constant instantaneous variance, s2; l can be interpreted as the
semi-elasticity of domestic money demand with respect to the interest rate and Et[dst] measures
the expected change of the exchange rate at time t. Both st and ft are assumed to be observable at
time t (Svensson, 1992).
The fundamental, ft, can be decomposed in an endogenous component, sensitive to MMAA’s

intervention, and an exogenous one. The process for the fundamental, ft, is described by the
stochastic differential equation (SDE)

dft ¼ yð ftÞ dtþ s dBt; ð2Þ
where y( ft) is the instantaneous drift, s240 is the instantaneous variance and Bt is a standard
Brownian motion.
The theoretical fundamental, which represents the long-run equilibrium level, depends on a set

of macroeconomic variables that affect the exchange rate. We assume its changes can be described
by

d~ft ¼ bt dt; bt : < ! <: ð3Þ
We suppose that MMAA intervene in order to maintain the fundamental, ft, broadly in line with

the theoretical value, ~ft. Doing so, we may assume MMAA’s aim is to minimize the difference
xt ¼ ft � ~ft.
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Interventions are justified by Mussa (1981): ‘A valid case for interventions lies on the ground
that the authorities may have better knowledge of their own future policy intentions than private
market participants’. MMAA can use standard monetary policy tools to modify the fundamental’s
dynamics. Several approaches describe the effects of these interventions on the dynamics of the
exchange rates (among others, Miller and Zhang, 1996; Mundaca, 2001).
In this work we assume that MMAA intervene to modify the rate of instantaneous change of

the fundamental, y( ft), representing the control variable.
Formally, the dynamics of xt on ðO;=;P�xÞ is given by

dxt ¼ dft � d~ft ¼ ½yðftÞ � bt� dtþ s dBt; ð4Þ

where y( ft) and bt are bounded functions, and P�x defines the probability measure of a Brownian
motion with initial position �x ¼ x0 2 <. Applying stochastic calculus,1 we have

dxt ¼ yðftÞ dtþ s dB̂t with dB̂t ¼ dBt �
bt
s

dt; ð5Þ

where b̂t is defined on ðO;=; P̂Þ. The equivalent probability measure P̂ is related to P by

dP̂

dP
=t
j ¼ exp

Z t

0

fs dBs�
1

2

Z t

0

f2
s ds

� �
: ð6Þ

According to (5) the process, xt, has the same drift, y(ft), of the fundamental, ft, and the
Monetary Authority’s goal is realized minimizing the expected discounted quadratic deviation of
xt from the origin

Jð�x; yÞ ¼ min
y2Y

Ê �x e�gt
Z 1
0

x2t dt

� �
for x ¼ x0: ð7Þ

The minimization is performed setting the optimal drift y�( ft)AY, with Y5 set of Borel
measurable functions; �x ¼ x0 ¼ f0 � ~f0 is the initial value of xt; g is the discounting factor (g40);
Ê �x is the expected value corresponding to a Brownian motion with initial position �x 2 <.
In terms of optimal stochastic control the problem becomes

Jð�x; y�Þ ¼ min
y2Y

Jð�x; yÞ; 8�x 2 <;

s:t: dxt ¼ yðftÞ dtþ s dB̂t:
: ð8Þ

In (5), we assume y( ft) absolutely continuous with a rate of change bounded between y1 and y2:
y1oy( ft)oy2; [y1, y2] represent the extreme sustainable measures to curb the dynamics of the
fundamental and the drift y( ft) is equal to y1, y1o0 when contractionary monetary policies are
introduced and it is equal to y2, y240 when expansionary monetary policies are adopted.

1According to Girsanov’s Theorem it is possible to estimate the probability measure of the new Brownian motion, B̂t.

R. Castellano and R. L. D’Ecclesia / Intl. Trans. in Op. Res. 14 (2007) 475–489478

r 2007 The Authors.
Journal compilation r 2007 International Federation of Operational Research Societies



2.2. The solution of the stochastic control problem

The formal Hamilton–Jacobi–Bellman equation to solve the control problem (8) is

gJ ¼ x2 þ s2

2
Jxx þ inf

y1< yð ftÞ< y2
fyðftÞJxg; ð9Þ

where subscripts identify derivatives.
We expect a solution based on the sign of Jx and we look for two numbers di(yj, g), for i5 1, 2;

j5 0, 1, 2, with d1( � )40 and d2( � )o0, identifying the switching points of the process xt. More
precisely, d1( � ) and d2( � ) represent the upper and lower threshold values that define an
endogenous time-varying ‘tolerance band’ and a time-consistent policy. We assume that if xt
exceeds the threshold values, di( � ) (i5 1, 2), MMAA’s interventions occur:

� if xtXd1( � )40 restrictive monetary policies are adopted causing the fundamental to switch
from an appreciating regime to a depreciating one;

� if xtXd2( � )o0 expansionary policies are introduced causing the switch from the depreciating
regime to the appreciating one;

� if d2( � )oxtod1( � ) no interventions occur and the fundamental follows the dynamics described
by equation (2).

According to the initial position of x, �x ¼ x0, the corresponding formalization of (9) is

ð1Þ gJ ¼ x2 þ s2
2
Jxx þ y2Jx; Jx)0; x)d2ð�Þ;

ð2Þ gJ ¼ x2 þ s2
2
Jxx þ yð ftÞJx; d2ð�Þ < x < d1ð�Þ;

ð3Þ gJ ¼ x2 þ s2
2
Jxx þ y1Jx; Jx*0; x*d1ð�Þ;

ð10Þ

where we assume that whenever �x finds itself within the tolerance band, �d2ð�Þ; d1ð�Þ�, the drift of
the process is y(ft).
We solve system (10) – details are reported in the Appendix – to derive the threshold values,

d1( � ) and d2( � ), and the optimal drift, y�(ft), for the process described by (5)

y�ð ftÞ ¼
yðftÞ d2 < �x < d1
y1 �x*d1 �x ¼ x0
y2 �x)d2

8<
: ð11Þ

Solution (11) says that MMAA push as hard as possible to reduce the difference xt ¼ ft � ~ft .
This means to move xt to the right of the critical point d2( � ) when �x)d2 and, vice versa, to the
left whenever �x*d1ð�Þ. Given the definition of xt (4), the fundamental dynamics become

y�ð ftÞ ¼
yðftÞ; ~ft þ d2ð�Þ < f0 < d1ð�Þ þ ~ft;
y1; f0*d1ð�Þ þ ~ft;
y2; f0)d2ð�Þ þ ~ft;

8<
: ð12Þ

where f0 is the initial point of the current fundamental.
Expression (12) says that MMAA’s aim is to move ft to the right (left) of the critical point

d2ð�Þ þ ~ft ðd1ð�Þ þ ~ftÞ when ft)d2ð�Þ þ ~ft ðft*d1ð�Þ þ ~ftÞ.
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We assume that whenever ft exceeds the tolerance band ð ft =2½d2ð�Þ þ ~ft; d1ð�Þ þ ~ft�Þ, some kind of
monetary policy interventions occur aimed at bringing ft back into the tolerance band, while no
action is taken if ft moves within the tolerance band. The intervention generates an inversion in
the trend of the fundamental and causes a switch in regime (state), bringing the process again
within the tolerance band according to the SDE (2).

2.3. The exchange rate dynamics

In order to express equation (1) in state-space rather than time-series representation, we consider
its solution as a continuous twice-differentiable function of the fundamental

st ¼ hðftÞ: ð13Þ
Applying Ito’s lemma we obtain the dynamics of s, which is described by2

ds ¼ h0ðf Þdf þ 1
2
h00ðf Þ ½df �2 ¼ h0ðf Þ½yðf Þdtþ s dB� þ 1

2
h00ðf Þs2 dt: ð14Þ

Taking the conditional expectation of (14) and using the law of motion (1) we obtain

Et ds ¼ h0Etyðf Þdtþ 1
2
h00s2 dt ¼ 1

l
ðs� f Þ dt: ð15Þ

Solving (15) we obtain an expression for the exchange rate related to the fundamental described by
(2).3 Using Krugman’s approach (1991, 1992), we obtain the general closed form solution of (15)

s ¼ hðf Þ ¼
f þ ly1 þ G1e

n1f þ I1e
o1f ; f0*d1ð�Þ;

f þ ly0 þ G0e
v0f þ I0e

o0f ; d2ð�Þ < f0 < d1ð�Þ;
f þ ly2 þ G2e

v2f þ I2e
o2f ; f0)d2ð�Þ;

8<
: ð16Þ

where we assume that within the tolerance band the drift is constant and equal to y05y( ft), and

ni ¼ s�2 �yi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2i þ 2s

2

l

q� �
> 0

oi ¼ s�2 �yi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2i þ 2s

2

l

q� �
< 0

i ¼ 0; 1; 2 ð17Þ

In (16) we need to determine Gi (i5 0, 1, 2) and Ii (i5 0, 1, 2) according to the following
boundary conditions

ð1Þ G0 ¼ 0; I0 ¼ 0;
ð2Þ G1 ¼ 0; I2 ¼ 0;

ð3Þ ly1 þ I1e
o1d1 ¼ ly0;

ly2 þ I2e
o2d2 ¼ ly0;

� ð18Þ

where

2To simplify notations we omit, where possible, time dependence.

3To simplify notations we assume, without loss of generality, that the initial level for the theoretical fundamental is
~f0 ¼ 0.
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� condition (1) implies that inside the tolerance band ]d2( � ),d1( � )[ MMAA do not adopt any
policy measure to modify the dynamics of the fundamental, hence the correct solution is
defined by the linear component of (15);

� condition (2) derives from the asymptotic behaviour of s:

lim
f!þ1

hð f Þ ¼ f þ ly1;

lim
f!�1

hð f Þ ¼ f þ ly2;
ð19Þ

which varies within the band defined by f1ly1 and f1ly2;
� condition (3) avoids the occurrence of discrete jumps at f5 di (i5 1, 2).

The final solution, therefore, is defined by

s ¼ f þ ly0; d2 < f < d1;
s ¼ f þ ly1 � lðy1 � y0Þeo1ðf�d1Þ; f*d1;
s ¼ f þ ly2 � lðy2 � y0Þen2ðf�d2Þ; f)d2:

ð20Þ

Figure 1 describes the dynamics of the exchange rate, s, solution of (15).

3. Model’s validation

In this section we provide a validation of the model described in Section 2. We use monthly data
for the D-Mark/US-dollar exchange rate over the period January 1973 (the beginning of the
general floating exchange rate system) to January 2005.
To estimate the parameters characterizing the fundamental dynamics we use the simulated

moments estimation (SME). The estimated parameters have been statistically tested.
We use the following specification for the monetary model:

st ¼ ft þ l½Etðstþ1 � stÞ�; ð21Þ

Fig. 1. Exchange rate dynamics within the tolerance band.

R. Castellano and R. L. D’Ecclesia / Intl. Trans. in Op. Res. 14 (2007) 475–489 481

r 2007 The Authors.
Journal compilation r 2007 International Federation of Operational Research Societies



where l is the semi-elasticity of domestic money demand; st is the logarithm of the spot exchange
rate (in terms of home currency, D-Mark, per unit of foreign currency, US-dollar); Et is the
conditional expectations operator defined by Etðstþ1Þ � Etðstþ1j=tÞ; ft defines the fundamental.
We assume the observability of the fundamental (Svensson, 1992). In addition, given the

Uncovered Interest Parity holds,4 ft is obtained from (21) as the difference between the spot
exchange rate, st, and the one-month interest rate differential ðrt � r�t Þ:

f̂t ¼ st � l̂ðrt � r�t Þ: ð22Þ
According to Huang (1981), a realistic estimation of the fundamental is obtained assuming
l̂ ¼ 1:5.
In this model, MMAA’s interventions are introduced when the difference xt ¼ ft � ~ft exceeds the

tolerance band ]d2( � ), d1( � )[. The threshold values, d1( � ) and d2( � ), and the strength of the control,
y( ft), in (5) are determined as the solution of the stochastic control problem described by (8).
We estimate the theoretical level ~ft using the f̂t described by (22) and assuming the term bt in (3)

is defined by

bt ¼ gðrt � r�t Þ: ð23Þ
Standard OLS technique on the difference of f̂t allows the estimation of g:

Df̂t ¼ gðDrt � Dr�t Þ þ et: ð24Þ
The results of the estimation of (24) are reported in Table 1.

3.1. Estimation of the fundamental

The process for the fundamental, ft, is generated by the difference equation

f xt ¼ hðft�1; et; x0Þ; ð25Þ
where h is the transition function; x0 ¼ ðy1; y2; yþ; y�; s; gÞ is the unknown q-dimensional vector
and {et} is an i.i.d. sequence of N(0, 1) random variables, defined on the probability space
ðO;=;PÞ. To calibrate the model and estimate y�( ft) according to (12), we make some realistic
assumptions about y( ft). Precisely, if the process, ft, moves within the tolerance band
~ft þ d2 < ft < d1 þ ~ft, after the adoption of expansionary (contractionary) policies, the drift of
the process y( ft) assumes a constant positive (negative) value: y1 (y� ).
From (25) a set of simulated equilibrium states, ff xt gNt¼1, can be generated. For some chosen

observation function h, in each period t an observation Z ¼ hð ft; ft�1; . . . :; ft�l�1Þ is made of a

Table 1

OLS results for equation (24)

g t sg R2

0.8 2.28 0.054 0.67

4According to the UIP: Etðstþ1 � stÞ ¼ rt � r�t :
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finite ‘1-history’ of state information. A corresponding observation of ff xt g can be formed for each
‘l-history’ of simulated states. Finally, the SME sets a value of x chosen to minimize the distance
between the sample first three moments of ff xt gNt¼1 and the sample first three moments of f f̂tgTt¼1;
where T is the number of historical observations (Duffie and Singleton, 1993; Newey, 2001). The
same procedure is repeated on the first differences of f, Df.
For each initial point f̂0 ¼ f0 and each parameter vector x 2 X, the simulated state process f̂ xt

� 	
is built as

f x0 ¼ f̂0;

f xtþ1 ¼ h ðf̂ xt ; êtþ1; xÞ:
ð26Þ

Using the SME, we compute the first three moments, m1,m2, m3 of ff xt gNt¼1, and the first three
moments, m1

0, m2
0, m3

0 of fDf xt gNt¼1. Hence we have an exactly identified case. We run 1200
simulations and estimate the vector x0 5 (y1, y2, y

1, y� ,s, g), obtaining

Solving the system of nonlinear equations (16), we obtain the estimated tolerance band,
diðyj; gÞ; �� 0:3052; 0:43196½. In Fig. 2 the dynamics for the estimated fundamental within the
tolerance band ��0:30052þ ~ft; 0:43196þ ~ft½ is presented.
These results imply:

� if ft � ~ft)� 0:3052, an intervention by MMAA occurs, i.e. expansionary monetary policies
generate a positive drift, y2 5 0.03469.
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Fig. 2. Fundamental dynamics within and outside the tolerance band.
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� if ft � ~ft*0:43196, restrictive monetary policies are adopted and the action is reflected in a
negative drift for ft, y1 5 � 0.0376.

� if �0:3052 < ft � ~ft < 0:43196, MMAA let the fundamental freely float inside the tolerance
band. We estimate a positive drift, yþ0 ¼ 0:003114, and a negative one, y�0 ¼ 0:00385, for the
appreciating and depreciating regimes, respectively.

The implementation of SME is based on a number of sample moments exactly equal to the
number of parameters to be estimated; hence we could not test the estimated model using the
over-identifying restriction. As an alternative, we adopt Smith and Spencer’s method (1992) and
generate n replications using the estimated parameters. In each replication m1,m2, m3 and m1

0, m2
0,

m3
0 were estimated, together with a test for normality. The results are reported in Table 2,

where the sets of the first three moments on the levels and on the first differences of the observed
and the simulated series are listed. On each of these series the statistics for skewness and
kurtosis are reported. The moments for the simulated series were obtained using n5 100
replications.
In the last column of Table 2 the percentage of replications in which the simulated value is

greater than the observed one, for positive sample statistics, or is less than the observed value, for
negative ones, is also reported. On average, 51 out of 100 replications provide a mean change in
the fundamental lower than the change in the observed series.5 All the values in Table 2 support
the statistical significance of the estimated parameters. The only non-significant statistic refers to
the kurtosis of the first differences, showing that the model does not succeed in describing the
observed kurtosis.

Table 2

Actual and simulated moments: test statistic for the fundamental

Actual Simulated % of simulated cases

exceeding the

reference ones

m1 ( f ) 0.824901 0.806774 48

m2 ( f ) 0.839948 0.731886 26

m3 ( f ) 0.653658 0.720764 71

Skewness ( f ) � 0.14727 � 0.01183 22

Kurtosis ( f ) � 0.71005 � 1.15951 89

m01 (Df ) � 0.00054 � 0.00058 51

m02 (Df ) 0.00288 0.0007483 75

m03 (Df ) � 0.0006 � 0.0026 79

Skewness (Df ) � 0.12032 � 0.00191 6

Kurtosis (Df ) 1.45574 0.295208 4

G 0.0031145

5A statistic is considered well matched if the proportion of replications in which the simulated value exceeds the

historical value falls roughly within the interval (0.05, 0.95).
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4. Conclusions

The paper presents a new theoretical approach to describe the long-swinging behavior of
exchange rates observed over the last 30 years.
The dynamics of the exchange rates are described as a function of the macroeconomic

fundamental, ft, which follows a Brownian motion with state-dependent drift. The process for the
dynamics of the fundamental is obtained as the solution of a stochastic control problem, which
describes the MMAA’s aim to keep the value of the fundamental as close as possible to a
predefined long-run path. The optimal control approach allows one to set an endogenous time-
varying tolerance band, outside of which an optimal time-consistent policy takes place.
The approach is realistic because it suggests a more adequate process to describe exchange rate

dynamics and provides an accurate analysis of the observed phenomenon with respect to simple
diffusion processes or MSMs, which may lack economic explanation. The model takes into
account MMAA’s role in preventing the exchange rate to be set at wrong levels and shows that
a change in monetary policy may lead to the long-swinging behavior of exchange rates.
Furthermore, we contribute to the re-examination of the monetary model in a time-varying
context and to the definition of possible interactions between the exchange rates and the
fundamental.
An application of the model is also provided. The estimation of the parameters that define the

dynamics of the fundamental supports the optimal control approach and the long-swinging
behavior of the exchange rates. The model succeeds in capturing all the major switches in regime
observed in the D-Mark/US-dollar exchange rate over the period 1973–2005.
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Appendix A

We look for solutions J5O(x2) as |x| " 1 of (10) which meet smoothly at x5 d2 and x5 d1 to
order 1, since the cost of control increases nonlinearly when xt is far from the origin. As a
particular solution of the first equation in (10) we find

x2

g
þ s2

g2
þ 2y2x

g2
þ 2y22

g3
x)d2: ðA:1Þ

A general solution of (10) is obtained adding to (A.1) a solution of gJ ¼ s2
2
Jxx þ y2Jx given by

C2e
l2x þD2e

Z2x; ðA:2Þ

where
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l2 ¼ s�2 �y2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ 2gs2

q� �
> 0;

Z2 ¼ s�2 �y2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ 2gs2

q� �
< 0;

ðA:3Þ

and C2, D2 are arbitrary constants.
A similar approach is applied for solutions of the other two equations in (10), so the general

solution is

gJ ¼

x2

g
þ s2

g2
þ 2y2x

g2
þ 2y22

g3
þ C2e

l2x þD2e
Z2x; x)d2;

x2

g
þ s2

g2
þ 2y0x

g2
þ 2y20

g3
þ C0e

l0x þD0e
Z0x; d2 < x < d1;

x2

g
þ s2

g2
þ 2y1x

g2
þ 2y21

g3
þ C1e

lnx þD1e
Z1x; x)d1;

8>>>>>>><
>>>>>>>:

ðA:4Þ

where terms li and Zi for (i5 0, 1, 2) are defined as in (A.3), using the corresponding drifts yj,
j5 0, 1, 2. The final expression for the threshold values d1(yj, g) and d2(yj, g) is obtained solving
(A.4) and defining the six arbitrary constants, Ci (i5 0, 1, 2) and Di (i5 0, 1, 2).
We are able to obtain the values for d1 and d2 as f(y0, y1, y2, g) solving a system of nonlinear

equations

a11e
l0d2�l0d1 þ a12e

Z2d2�Z0d1 ¼ b11;
a21e

l0d2�l0d1 þ a22e
Z2d2�Z0d1 ¼ b21;

�
ðA:5Þ

Equation (A.5) is obtained substituting the value of the constants C0, C1, C2, D0, D1, D2 in
expression (A.4).
Ci (i5 0, 1, 2) and Di (i5 0, 1, 2) are obtained imposing the quadratic growth condition; for

|x| " 1, C2 5 0 and D1 5 0. The other four arbitrary constants are obtained assuming continuity
of J(x) and its first derivative, Jx(x), in x5 d2 and x5 d1, so we get the following four equations to
determine C1, C0, D0, and D2.

2y0
g2
� 2y1

g2
þ C0l0el0d1 � C1l1el1d1 þD0Z0e

Z0d1 ¼ 0;

2ðy0 � y1Þ
g2

d1 þ
2y20
g3
� 2y21

g3
þ C0e

l0d1 � C1e
l1d1 þD0Z0e

Z0d1 ¼ 0;

2y0
g2
� 2y2

g2
þ C0l0el0d2 �D2Z2e

Z2d2 þD0Z0e
Z0d2 ¼ 0;

2ðy0 � y2Þ
g2

d2 þ
2y20
g3
� 2y22

g3
þ C0e

l0d2 �D2e
Z2d2 þD0e

Z0d2 ¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

ðA:6Þ

Solving system (A.6) and assuming also continuity of the second derivative Jxx(x) for x5 d2 and
x5 d1, we get an expression for C1 and D2 as function of C0 and D0

C1l1el1d1 ¼ D0Z20e
Z0d1 þ C0l

2
0e

l0d1 ;

D2Z22e
Z2d2 ¼ D0Z20e

Z0d2 þ C0l
2
0e

l0d2 :

�
ðA:7Þ
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Substituting (A.7) in (A.6), after some algebra, we get the final expressions for C0, C1, D0

and D2

C0 ¼
p1l1Z0 � q1ðl1 � Z0Þ
ðZ0 � l0Þðl1 � l0Þ

e�l0d1 ;

C1 ¼
C0l

2
0e
ðl0�Z2Þd2 þD0Z20e

ðZ0�Z2Þd2

Z22
;

D0 ¼
p1l1l0 � q1ðl1 þ l0Þ
ðl0 � Z0ÞðZ1 � Z0Þ

e�Z0d1 ;

D2 ¼
C0l

2
0e
ðl0�l1Þd1 þD0Z20e

ðZ0�l1Þd1

l21
;

ðA:8Þ

with

q1 ¼
2

g2
ðy0 � y1Þ;

q2 ¼
2

g2
ðy0 � y2Þ;

p1 ¼d1q1 þ
2

g3
ðy20 � y21Þ;

p2 ¼d2q2 þ
2

g3
ðy22 � y20Þ:

ðA:9Þ

Furthermore, it could be verified that non-negative constants C1 and D2 guarantee the convexity
of function J(x).
Once defined the arbitrary constants C0, C1, D0 and D2, in order to get the expression for d2 and

d1 as f(y0, y1, y2, g), we impose the values of the solutions for J(x) to match at x5 d2 and x5 d1,
and we get the following system of nonlinear equations

a11e
l0d2�l0d1 þ a12e

Z2d2�Z0d1 ¼ b11;
a21e

l0d2�l0d1 þ a22e
Z2d2�Z0d1 ¼ b21;

�
ðA:10Þ

with
a11 ¼l½q2ðl0 þ Z2Þ�;

a12 ¼j½p2Z22 � ðZ0 þ Z2Þðq2 � Z2p2Þ�;

a21 ¼l½�q1ðl1 þ Z0Þ þ l1Z0p1�;

a22 ¼j½�q1ðl0 þ Z2Þ þ l0l1p1�;

b11 ¼k½q1 � l0p1�;

b21 ¼m½ðq2 � Z2p2Þðl0 þ 2l1 þ Z0Þ�;

ðA:11Þ
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where
j ¼ ðZ0 � Z2Þðl0 � l1Þ;
k ¼ ðl1 � Z0Þðl0 � l1Þ;
l ¼ ðl1 � Z0Þðl0 � Z2Þ;
m ¼ ðZ0 � Z2Þðl0 � Z2Þ;

ðA:12Þ

which is solved using Newton’s algorithm.
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